
# Disk storage technology for the LHC T0/T1 centre at CERN

Helge Meinhard / CERN-IT CHEP Interlaken / 2004-09-29 Presenting work of IT-FIO and IT-ADC

#### Current model



#### Current disk storage: HW

# 370 disk servers: Storage in a box Dual Intel PIII or Xeon

- 1 or 2 GB of memory
- Gigabit Ethernet
- Hardware RAID controller (PCI cards)
- 12...26 EIDE disks in hot-swap trays
- Standard CERN Linux, CERN tools for installation, configuration and monitoring (ELFms)
- 6'700 disks in total
  - 544 TB before RAID-ing

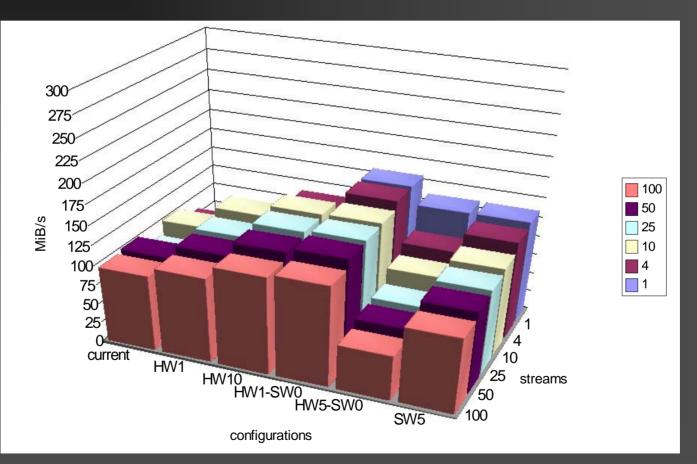
#### Current disk storage: HW

July 2003 (tender), January 2004 (delivery):

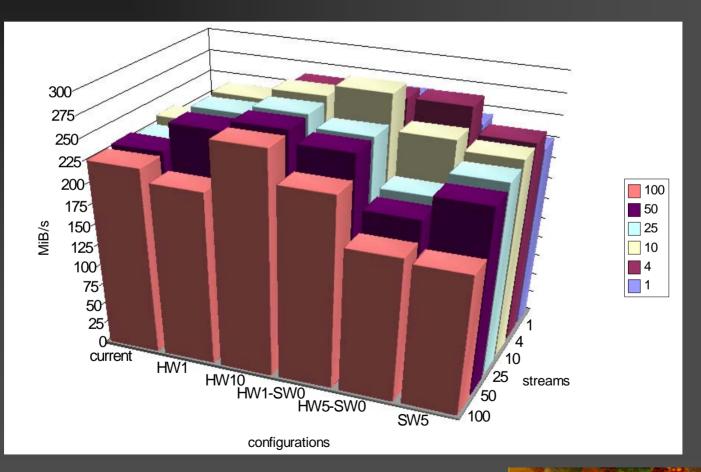
- 8U rackmount
- 3 RAID cards
- 22 data disks @120GB
- 2 system disks @80GB



### **RAID** options and file systems


- Until spring 2004:
  - RAID 1 (mirroring) over two disks
  - One ext2 or ext3 file system per mirror
- Drawbacks:
  - Expensive in terms of capacity loss
  - Sub-optimal performance if fewer streams than mirrors
- Detailed performance studies in highly dimensional phase space has resulted in ...
  - Hardware RAID 5 over all disks of one controller
  - Software RAID 0 (stripe)
  - xfs filesystem
  - Linux kernel: New elevator / VM tuning parameters

### **RAID** options


Comparison of various RAID options
 Using xfs as file system
 Tuned elevator and vm kernel parameters
 iozone benchmark

 Testing transfers between memory and disk
 No network involved

#### **RAID** options – writing



#### **RAID** options – reading



#### Capacity per server, cost per GB





Transferring >= 10 files of 2 GB size each

- Into or from the disk server
- Protocol: rfio
- Data path: single Gigabit line
- Disks: mirrored (RAID 1), ext2, no kernel tuning (~ previous configuration)

## Performance (2)



#### Reliability, ease of management

ne a subar a constante da la constante da constante da constante da constante da constante da constante da const

- Detailed study under way (see Tim Smith's talk earlier in this session)
- Biggest problem: 51 servers delivered with 24 disks each of a bad batch (bad head construction)
  - All 1224 disks replaced by supplier after 10 months

Cages replaced as well

 Most worries (apart from failing disks): bad connectivity (trays and cages, cables)

#### Future directions – short term (1)

ne a sense se a companya da la companya da companya da companya da companya da companya da companya da companya

#### Disk technology: Move to SATA

- Disk server tenders of 2004 have excluded EIDE disks
- Getting SATA disks now
  - 75 disk servers with 1'800 disks to be delivered next month
- Hope: better reliability
  - Mechanical quality expected to be (at least) the same as EIDE disks
  - Easier connectivity
  - More professional cages and trays
    - SATA in widespread use
    - Replacing more and more SCSI and FC disks

#### Future directions – short term (2)

- System architecture: FC attached space
  - Medium-size tender for FC attached disk arrays and hosts
    - 22 arrays of 16 disks of 400 GB each, to be delivered in November 2004
  - Advantages over disk servers:
    - System architecture more flexible
      - Possible to move to SAN
    - Storage can be made fully redundant
      - Only few applications need that
  - Drawback: higher price
  - Performance measurements ongoing, no conclusive results yet

#### Future directions – longer term

Distributed storage across CPU servers

- Some testing done
- Parallel file systems all not adequate today
- Standard Castor-like usage
  - Not really a change of the big architectural picture
  - Could reduce cost of disk storage
  - Drawbacks: number of 'disk servers' much higher, CPU servers would become stateful

#### Conclusions

- Current architecture: distinct tape, disk, CPU services interconnected by Ethernet / TCP-IP
  - Matches well current requirements
  - Is expected to scale such that requirements of LHC will be met as well
  - Has proved to be cost-effective and manageable
- Keeping eyes and ears open for possibilities to optimise performance, reliability, and/or cost
- Future will be evolutionary, not revolutionary

#### Network backbone capacity / load

an a she na marka **ini b**ara **i ini a** kina minan ka ba dalimir di na basa ka sa ka sa k

Now: 6 routers interconnected with 4 Gbit links each

- Estimated capacity: ~ 10 Gbit/s
- Used currently: 200...300 MBytes/s (~ 20%)
- Backbone designed for 2.5 Terabit/s in 2007/2008

Estimated usage: T0: 5...10 GBytes / s, the rest: 50 GBytes / s