
THE NEXT GENERATION ROOT FILE SERVER

Andrew Hanushevsky, SLAC, Stanford, USA
Alvise Dorigo, INFN, Padova, Italy

Fabrizio Furano, INFN, Padova, Italy

Abstract

As the BaBar experiment shifted its computing model
to a ROOT-based framework, we undertook the
development of a high-performance file server as the
basis for a fault-tolerant storage environment whose
ultimate goal was to minimize job failures due to server
failures. Capitalizing on our five years of experience with
extending Objectivity's Advanced Multithreaded Server
(AMS), elements were added to remove as many
obstacles to server performance and fault-tolerance as
possible. The final outcome was xrootd, upwardly and
downwardly compatible with the current file server,
rootd. This paper describes the essential protocol
elements that make high performance and fault-tolerance
possible; including asynchronous parallel requests, stream
multiplexing, data pre-fetch, automatic data segmenting,
and the framework for a structured peer-to-peer storage
model that allows massive server scaling and client
recovery from multiple failures. The internal architecture
of the server is also described to explain how high
performance was maintained and full compatibility was
achieved[1]. Now in production at Stanford Linear
Accelerator Center, Rutherford Appleton Laboratory
(RAL), INFN, and IN2P3; xrootd has shown that our
design provides what we set out to achieve. The xrootd
server is now part of the standard ROOT distribution so
that other experiments can benefit from this data serving
model within a standard HEP event analysis framework.

THE XROOT SERVER
The xroot server architecture is shown in figure 1. It is

composed of multiple components. Each component
serves a discreet task and is easily replaceable. The
collection of components is called xrootd.

The xrd Component
The xrd component provides networking support,

thread management, and protocol scheduling. This
component has the potential to severely impact sever
scalability. Careful attention was given to algorithms used
to insure minimum overhead per client-server interaction.
The performance oriented features include:

Use of the best socket handling features that the
underlying OS provides.

Threads are managed by a lightweight scheduler, The
scheduler attempts to keep enough threads ready to
handle the recently experienced load. Generally, threads
are created for each incoming request, up to the maximum
computed based on system resources. The exact number
can also be configured. Once the maximum is reached,
threads are shared by all clients. When threads become
idle, they are automatically eliminated using an
exponential decay function.

The xrd component allows multiple protocols to be
used at the same time. Each configured protocol is asked
whether it can handle an incoming connection. A protocol
object instance is created once a match is found. This
object is then scheduled, when necessary, to handle client
interactions. This feature is used to provide simultaneous
xroot and root protocol support

The xrd component provides for the highest level of
parallelism by avoiding functions that tend to serialize
execution, maintaining suitably grained locks, and using
threads whenever possible to perform internal
housekeeping. As such, it implements a very low
overhead protocol engine capable of serving thousands of
clients.

The xroot Component
The xroot component implements the xroot protocol.

This protocol provides generalized POSIX-like file access
enhanced by High Performance Computing (HPC)
extensions, and fault recoverability (FR) features. The
protocol is architected as a platform-neutral simple binary
stream to eliminate most of the encoding-decoding
overhead associated with other similar protocols. While
this reduces the chances of general inter-operability, the
HPC and FR extensions make the protocol unlikely to
inter-operate with other network based file protocols
without sacrificing significant usability. The significant
HPC extensions include:

• asynchronous responses so that a client can launch
multiple requests at the same time,

dynamic
load

Figure 1: The xrootd Architecture

xr

Separate process olb

ofs

acc odc oss

xrd

xroot

sfs

root

sec

dynamic
load

dynamic
load

• asynchronous I/O when the operating system
supports it and resources are available,

• pre-reading data so that it is available in memory
on the next client interaction,

• asynchronous file access preparation to minimize
file open overhead,

• automatic I/O segmenting to allow data stream
multiplexing, and

• client-directed request monitoring to allow
application tuning.

As can be seen, most of the HPC features involve
enabling a rich set of asynchronous facilities to provide
clients the maximum number of opportunities for
parallelism. The significant FR features include:

• request redirection so clients can be dynamically
steered to least loaded operating servers,

• request deferral so that the server can even out
highly variable loads without increasing its own
state overhead,

• client-directed error state notification, and
• unsolicited responses to asynchronously

reconfigure client-server connections.
The FR features are used to implement dynamic load

balancing, server failure recovery. Most of these features
are used in combination with the Open Load Balancing
(olb) structured peer-to-peer (SP2) system that can be run
in conjunction with xrootd. The olb system is described
later in this paper.

In addition to providing xroot protocol file access, the
xroot component is also responsible for invoking the
authentication component. The authentication component,
not described in this paper, is architected as a general
authentication protocol plug-in mechanism capable of
simultaneously supporting multiple protocols.

The sfs Component
 Since file serving is the focus for xrootd, it interacts

with another component to provide file access. This
service is based on the Standard File System class,
XrdSfs. The actual implementation of this class is loaded
at run-time; allowing for numerous implementations, as
needed by any particular installation. A default
implementation is provided that provides the minimum
set of features to support the xroot protocol. Another
configurable implementation is also provided. This
implementation supports all the xroot protocol features
and is called the Open File System (ofs) component.

The ofs Component
The ofs component provides enhanced first level access

to file data. Since this component is expected to support
the full set of xroot protocol features, it is architected as a
multi-component service. Each component is responsible
for implementing a particular set of features that can be
easily re-implemented to correspond to the actual
underlying architecture. These components are:

• Access Control (acc based on the XrdAcc class),

• Open Distributed Cache (odc based on the XrdOdc
class),

• Open Storage Service (oss based on the XrdOss
class), and

• Peer proxy service (xr based on the XrdXr and
XrdOss classes).

• The ofs component is responsible for coordinating
the activities of these components to provide an
effective file system view.

The acc Component
The acc component implements the authorization

service. This service is responsible for granting clients
access to files. It uses the authentication information, if
any, passed through by the xroot component. The
authorization component is implemented as a reverse file
capability list. A capability oriented implementation was
chosen to optimize operations when the number of files
substantially exceeds the number of users capable of
accessing files. In this scheme, each user and user
association can be granted or denied access to files that
start with a particular prefix. The set of privileges
correspond to those implemented by Windows XP and is
a super-set of POSIX privileges. Generally, this provides
the ability to associate capabilities (or lack of capabilities)
to users. It is a reverse file capability list in that
specifying a file prefix completely effectively implements
an access control privilege scheme where a file (or set of
files) is associated with a number of users and their
capabilities. Thus, allowing for ACLs in those cases
where fine-grained access control is necessary.

The odc Component
The ods is responsible for locating the right server to

use for a particular file open request. It is invoked by the
ofs when dynamic load balancing or proxy support is
configured.

The odc provides numerous services under the guise of
finding the right server for the requested file. The four
main functions are:

• communicating with the olb to discover the
location of a file and appropriate server to provide
access to that file,

• passing xroot protocol requests to the olb that may
need to be handled on a remote host (e.g., file
preparation, file removal, etc),

• coordinating the activities of other xrootd servers
running on the same host, and

• initiating the use of a proxy service should remote
file access be needed.

When invoked, the odc may respond with a server-port
pair indicating that the client should be redirected to that
host for subsequent file access. This occurs when the
server is configured in "redirect remote" mode. The odc
may respond with a simple port number, indicating that
the client should be redirected to another xrootd server
running on the same host. This occurs when the server is
configured in "redirect local" mode. The odc may respond

with an instance of a oss object that should be used for
actual file access. This occurs when the server is
configured in "redirect proxy" mode. When the server is
configured in "redirect target" mode, the odc passes
execution state information to the local olb. That
information is used in redirection decisions by other
olbd's serving xrootd configured in "redirect remote"
mode. Finally, the odc may respond with a null response
indicating that the incoming request should be processed
by the oss component as if the odc was not configured.

For redundancy, the odc can communicate with
multiple olbd's in order to provide a fault tolerant
environment as well as to load balance requests among all
of the olbd's. The mechanisms used to distribute requests
so that a consistent file system image is maintained is
outside the scope of this paper.

The oss Component
The oss component is responsible for providing access

to the underlying file system. It is invoked by the ofs
component to perform actual I/O as well as execute file
system mete-data operations (e.g., rename, remove, etc).
As such, it implements a physical storage system.

We differentiate the phrase file system and storage
system in that a storage system provides access to stored
data that may or may not be reside in an actual file
system. For instance, the file may reside in a Mass
Storage System (MSS) and will need to be retrieved prior
to access. Alternatively, the file may reside on another
xroot server and a proxy relationship will need to be
established in order to provide access. In all cases, the
actual act of providing access to data is handled by the
oss. The mechanism used to provide that access is
encapsulated by the oss to provide a uniform view of
storage regardless of how it must be accessed.

The ofs dynamically loaded library contains a generic
implementation of an oss that provides the following
essential services:

• access to an MSS using configurable agnostic call-
outs so that any kind of MSS can be used,

• a generic file system cache facility so that multiple
file systems can be aggregated into a single
uniform view,

• a proxy service to provide real-time access to files
that reside on other xroot servers,

• I/O and meta-data access to a UFS-type file
system, and

• asynchronous I/O capabilities, should the
operating system support it.

ADDITIONAL PERFORMANCE AND
FAULT TOLERANCE

While the xrootd server was written to provide single
point data access performance with an eye to robustness;
it is not sufficient for large scale installations. Single
point data access inevitably suffers from overloads and
failures due to conditions outside the control of the server.
Our approach to solving this problem involved

aggregating multiple xroot servers to provide a single
storage image with the ability to dynamically reconfigure
client connections to route data requests around server
failures. Such an approach can work as long as servers are
not interdependent. That is, while servers can be
aggregated, a failure of any server should not affect the
functioning of other servers that participate in the scheme.

The approach we took was modelled after many
existing peer-to-peer systems which have shown to be
extremely tolerant of failures and scale well to thousands
of participating nodes. The structure consists of one or
more servers, called redirectors, rooting a B64 tree
structure of data servers. Information flows up the tree to
the redirectors that redirect client requests to servers
lower in the hierarchy.

From the server's perspective, data servers only know
that they are participating in a cooperative structure but
no single data server is aware of the structure. Servers at
the root of each B64 node only know the existence of
their immediate neighbours and one or more servers
higher in the tree. This effectively isolates failures to
small areas within the configuration. Even the most
significant failure in the structure only causes a small part
of the overall structure to reconfigure in order to maintain
a cooperative data access view.

We chose a hierarchical model because this minimizes
the number of messages that needed to flow through the
system and creates predictable access paths. The choice of
a B64 tree was done out of practical necessity to keep the
decision making overhead to reasonably low levels;
avoiding latency pile-ups that could cause the system to
become unstable. We call this a structured peer-to-peer
model because while servers work in a peer-to-peer
fashion within the system, a particular structure is
imposed.

The system provides high levels of scalable
performance because clients can be dispersed throughout
a large set of servers. Adding additional servers naturally
allows more clients to participate. This happens because
clients will either be directed to servers that have the
requested data or should those servers near saturation
levels, clients are directed to less active servers that will
replicate the requested data. Hence, the load will be
balanced across all of the servers. Unanticipated hot spots
are naturally alleviated because the protocol allows any
server that finds itself in a hot-spot to redirect clients
away from itself. This forces clients to settle upon other
servers that are less loaded. We call this mode of
operation "dynamic load balancing" and it is one of the
major reasons that the system scales.

Since the protocol allows connection configuration
changes to occur at any time, the system also provides
unprecedented fault tolerance. Should a server failure
occur, a client needs only to contact a redirector to find an
alternative source of the data.

The olbd Process
As we mentioned in the previous section, the system

was designed using an independent set of servers to

provide the control information to effect xrootd server
selection. This set of independent servers forms what we
call the control network. It is logically independent of the
data access services provided by the xroot servers; which
form the data network. Either network can be replaced in
total. Indeed, the we have shown that the structure can
work as well with xroot servers as it can with Objectivity
AMS servers in a production environment. The only
requirement is that the protocol allows clients to be
redirected to other servers; something the Objectivity
protocol allows.

The control network is made of servers called Open
Load Balancing Daemons (olbd), Each node that provides
data must have an xroot server and an olbd running on it.
The olbd runs in what we call server mode since it is
responsible for relaying information about the node
providing a data service.

The xroot server running on a data node connects to the
local olbd. This allows the olbd to know the status of the
server and the port number that it is using. This
information is relayed to other olbd's so that clients can be
properly directed to the data node, as needed.

Each local olbd subscribes to one or more olbd's
running in manager mode. A subscription effectively tells
the target olbd that the node is capable of providing a data
service on a particular port. Identification of manager
olbd's is done by administrative configuration. This is not
an odious task because there are only a handful (usually
two) of olbd's running in manager mode.

A manager olbd is special in that it resides at the top-
most level of the connection hierarchy. It differs from
server mode olbd's in that it accepts connections from
multiple xroot servers. These xroot servers form the
redirectors. That is, clients making requests of these
servers are always redirected to appropriate servers lower
in the hierarchy. Redirectors do not provide data only
request steering information.

The xroot servers that connect to the manager olbd's are
administratively configured to ask the manager olbd
where to direct the incoming client request. Again, this
configuration is simple since there is no need to have
more redirecting xroot servers than manager olbd's.

When a manager olbd is asked for request guidance, it
first checks its cache of recent requests to see if it already
knows where the request should be sent. If the
information exists in its cache, the response is immediate.
Otherwise, the redirecting xroot server is told to delay the
client for a fixed period of time while it asks the olbd's
that are subscribed to it whether or not they have the
requested file. All olbd's that have the file report its
existence. Those olbd's that cannot find the file on their
node stay silent. File existence information is collected by
the manager olbd and cached. Eventually, the client
comes back and asks for the file which prompts xroot
server to ask again. This time the information is in the
cache and the response is immediate.

CONCLUSIONS
In building the xroot system, we have shown that it is

possible to construct a large loosely coupled highly
distributed data access service that exhibits an
unprecedented degree of scaling. In the process we
discovered that a fundamental paradigm shift needs to
occur on what constitutes a scalable system and the
algorithms that need to be employed to achieve that goal.

Based on our experience, we can state seven
fundamental rules of scalable systems:

1. Basic building blocks must exhibit high
performance and low latency,

2. Client requests must be dispersed throughout the
system as quickly as possible. This argues
against top-heavy systems where significant
decisions are made when a request first enters
the system. Instead, such decisions should be
distributed and performed as late as possible.

3. The amount of information flow in the system
must be minimized. This argues that information
about any component within the system is only
as accurate as it is close to the relevant
component that the information describes;
further bolstering the argument for distributed
decision making as well as systems that attempt
to micro-manage the request flow.

4. Latencies within the system must be kept as even
as possible, even with it means that latency has
to be introduced to achieve that goal. In some
sense, when all points exhibit the same latency,
the system is capable of "pipelining" requests
and can thus reach maximum throughput.

5. A system is scalable in proportion to its fault-
tolerance. The larger the system, the more fault-
tolerant it needs to be. This seems counter-
intuitive until one realizes that scaling not only
involves servers but clients as well. The larger
number of servers the larger number of clients.
Systems that are not fault tolerant tend to exhibit
large fluctuations in client request load as
components fail. Fault tolerant systems tend to
even out those fluctuations avoiding request
avalanches.

6. Scaling is a two-way street. Servers and clients
must be full participants in the information flow.

7. Scalable systems are limited by administrative
overhead. If the administrative overhead grows
in direct proportion to the size of the system,
scaling becomes unsustainable simply because of
the human cost in maintaining the system and the
consequent human errors inherent in maintaining
large systems. This argues for self-configuring
systems.

REFERENCES
[1] http://xrootd.slac.stanford.edu.

