
Data Management in EGEE∗

P. Kunszt, P. Badino, R. Brito da Rocha, Á. Frohner,
G. McCance, K. Nienartowicz, CERN, Geneva, Switzerland

Abstract

Data management is one of the cornerstones in the dis-
tributed production computing environment that the EGEE
project aims to provide for a European e-Science infras-
tructure. We have designed a set of services based on pre-
vious experience in other Grid projects, trying to address
the requirements of our user communities. In this paper we
summarize the most fundamental requirements and con-
straints that have driven the architecture and the particular
choice for service decomposition in our service-oriented ar-
chitecture. The three service groups for data management
services are the Storage Element, the Data Scheduling and
the Catalog Services.

INTRODUCTION

In this document we present the architecture of the Data
Management components of the EGEE Grid Middleware
(called gLite) [5]. It is driven by the requirements of Grid
applications [1, 2, 6], the Open Grid Services Architecture
(OGSA) [11] as well as previous experience from other
Grid projects. For an overview of gLite, the reader is re-
ferred to [4].

All of the gLite data management services are based on
the concept of service oriented architectures [9]. We aim to
deliver a modular set of services that call upon each other to
deliver their specific functionality and semantics to the end-
user. There are many services necessary to meet the needs
of the end-user. All the services have to work together in
an integrated manner, delivering end-to-end capabilities to
the applications working with them.

The modularity aspect and service orientation also al-
lows organizations to replace services with their own,
adding specialized semantics they need. So we address ac-
tually not only the need of the end-user to have a system
that ’just works’ but also the need of the service provider
to be able to slot in their own custom service, providing the
necessary interface to it and making it work in an integrated
fashion with gLite.

The interfaces are all described through WSDL [3], and

∗EGEE is a project funded by the European Union under contract num-
ber INFSO-RI-508833

we also make an effort to adhere to WS-I [7] in order to
have the highest possible interoperability. We do not adopt
at this point in time any of the emerging web service tech-
nologies (like WS-Addressing, WS-Notification, WSRF,
etc) since most of them have not gone yet through the stan-
dardization process and the tooling that supports them is
not mature enough for our purposes.

OVERVIEW

In this section we give an overview on the data manage-
ment services present in gLite and motivate their architec-
ture based on the requirements.

Requirements

The requirements for the Data Management Services
may be classified into functional and non-functional re-
quirements. Non-functional requirements and constraints
include generic considerations about scalability, security,
service policies, reliability and resilience. Functional re-
quirements have to do with the service logic, semantics
and interactions with the user and among themselves. The
most important non-functional requirements are: Not hav-
ing single points of failure in the system, providing locality
of reference, i.e. important data for job execution should be
available locally, and security considerations dealing with
the enforcement of site policies, VO policies and account-
ing information.

Additional motivation for the service architecture and
their interactions is based on the basic functional require-
ments for data management. These are simple operations
as seen by the user, however, in a distributed environment
they require complex well-coordinated operations on many
services in order to fulfil the non-functional requirements
as well. The operations are only complex inside the ser-
vice architecture but the user is given the illusion of simple
atomic operations. Due to the distributed nature of these
operations the user will see different options for quality of
service and many more failure modes.

In terms of functionality, we address first and foremost
the management of files (as opposed to databases), since
most of our requirements come from communities (espe-



cially High Energy Physics) whose data is stored mostly in
files. Of course we also provide interfaces to enable access
to data in databases and metadata catalogs. The end-user
functional requirements [1, 2, 6] can be summarized as a
set of operations that the data management subsystem has
to support. These operations deal with

• File I/O. The user wants to access their data trans-
parently through standard I/O mechanisms (POSIX),
using a file name that the system understands in every
environment, wherever the actual job is being sched-
uled. All the security mechanisms, name resolution,
etc, should happen without the explicit intervention of
the user. However, if there are problems, the user ex-
pects to have a descriptive error response.

• Transfer files across the WAN. The user wants to dis-
tribute data across many sites in the Grid. She wants
to use a simple intuitive interface to instruct the Grid
services to make files and sets of files available at spe-
cific locations, also based on subscription models.

• Browse the catalogs. The user wants to browse the
file namespace similar to a virtual file system. Meta-
data should be attached to the catalogs and selection
of files and sets of files should be possible based on
metadata. File ACLs should be available and enforced
by the system.

There are additional implicit requirements on the Grid,
stemming from requirements on other Grid services, espe-
cially the Workload Management Services. For example,
in order to schedule jobs at the correct Computing Ele-
ment, the Grid Storage Element needs to be able to deal
with space reservations. Such requirements are not listed
in detail at this point.

Another important requirement is the security aspect of
working in a Grid environment. All services need to au-
thenticate and authorize the user based on his credentials.
The access to data needs to be restricted through well-
defined and well-manageable access control mechanisms.
The concept of security is pervasive in the sense that the
architecture and design of the services is strongly driven
by security considerations. It is not possible to simply ’add
security’ to a complex set of services later on without mas-
sive architectural changes.

Files in the Grid

We have the following file names in the Grid:

LFN Logical File Name: A logical (human readable) iden-
tifier for a file. LFNs are unique but mutable, i.e. they
can be changed by the user. The namespace of the
LFNs is a global hierarchical namespace.

GUID Global Unique Identifier: A logical identifier,
which guarantees its uniqueness by construction
(based on the UUID mechanism [?]). Each LFN also

has a GUID (1:1 relationship). GUIDs are immutable,
i.e. they cannot be changed by the user.

SURL The Site URL specifies a physical instance of a
file. Also referred to as the Physical File Name (PFN).
SURLs are kept in the Storage Elements.

Usually, users are not directly exposed to GUIDs and
SURLs, but only to the logical namespace defined by LFNs
- the Grid system handles the rest (see also Figure 2).

Service Architecture Overview
The three main service groups that relate to data and file

access are: Storage Element, Catalog Services and Data
Scheduling.

The Storage Element (SE) is responsible for sav-
ing/retrieving files to/from the local storage that can be any-
thing from a disk to a mass storage system. It manages disk
space for files and maintains the cache for temporary files.

The LFN - GUID - SURL mappings are being kept in
the Catalog Services.

The Data Scheduling services manage wide area data
transfers between SEs and coordinate the entries in the cat-
alogs with the actual data in the SEs.

STORAGE ELEMENT
The SE provides the following set of capabilities:

Storage resource. The SE provides the storage space to
store files.

POSIX-like I/O access to files. The SE provides an in-
terface that can be used to access the files directly
through a POSIX-like protocol.

File Transfer requests. Each SE has a capability to queue
and manage file transfers between the local SE and
remote SEs.

Storage space management. The SE may provide a
means to manage the available space and the lifetime
of files. The SE may also provide additional optional
mechanisms such as quotas, space reservation, names-
pace management, etc.

Access Control The SE secures file access through access
control lists.

Accounting The SE may keep logs about the resource
consumption of each user and organisation.

We distinguish logically between opportunistic storage
(also referred to as a tactical SE) and permanent storage
(strategic SE). The tactical SE makes very little guarantees
towards the longevity of a file and can be regarded as a
’scratch work space’. The strategic SE gives the user some
guarantee about their data files. Such strategic SEs usu-
ally are coupled to a mass storage device to store the data
permanently.



SEs are controlled by the sites and are subject to local
policy. Having the concept of the tactical SE allows a site
to declare space in a local store in an opportunistic man-
ner. It can provide storage that is currently unused by their
local users and revoke it whenever necessary. This will
make it attractive to sites to make resources available to
grid users, knowing they can re-claim the resources when-
ever they want. Thus, jobs requiring local storage may be
run at many more sites. Users are expected to keep only
disposable data in such stores - meaning that it should not
matter if the instance of the data is lost - because it can be
re-generated or re-copied from a master instance for exam-
ple. Important data, master copies should not be kept in
such storage (only at the user’s own risk). If users generate
new data at such stores, they should either register a master
copy at a more long-term SE or be prepared to re-generate
the data if necessary.

The SE has several public interfaces: The Storage Re-
source Management (SRM) interface [10], a POSIX-like
File I/O interface and some file tansfer protocol interface.
The SE also runs internally a File Transfer Service, which
is however an internal component, dealing with requests
that come through the File Placement Service (described
below).

The SE is tightly coupled to a local file catalog (de-
scribed below) in order to resolve the logical name space
used by the user to the actual datafile to be found on the
given resource.

The POSIX

Figure 1: The SE file I/O interactions.

The actual POSIX-like File I/O interface is not a web
service; the client communicates with the server through
a traditional socket-based I/O library. Figure 1 shows how
the I/O works in detail. The I/O client library accepts either
LFN or GUID as an input to the API. The LFN or GUID is
presented to the I/O server, which checks with the Catalog
Service whether the user is allowed to access the file in
the given way, resolving the GUID or LFN into the SURL
which is then handed to the local SRM in the process. The
actual file handle is acquired through SRM and will be used
to access the actual file and serve the data to the client.

There is a lot of room for customisation in this model
since all components are pluggable. For example, the gLite
I/O is currently based on the Alien I/O [8], but it should be
possible to plug in other libraries instead.

CATALOG SERVICES
We identify four interfaces that may be implemented to-

gether or separately in the gLite Grid. The File Cata-
log (FC) and Replica Catalog (RC) both make part of the
GUID – LFN – SURL mappings accessible (see Figure
2). The File Catalog interface exposes operations only on
the mappings that it manages, as does the Replica Cata-
log interface. The Replica Catalog interface gives access
to the GUID – SURL mappings identifying all replicas
of a given GUID. All the rest of the mappings are kept
in the FC. Operations that involve both catalogs and also
the Metadata Catalog and File Access Service are exposed
through a Combined Catalog interface. The reason for

Figure 2: Catalog Services with the accessible mappings.

this interface decomposition is to have service interfaces
with well-defined semantics which may be implemented
by many parties. In this model, a possible scenario is that
all three interfaces may be implemented over a single cen-
tral database. Another possibility is that the File Catalog
is central whereas the Replica Catalog is distributed over
many sites and synchronised through some database repli-
cation scheme. Also, either the File Catalog, Replica Cata-
log or most commonly the Metadata Catalog might be im-
plemented and controlled by the VO directly. If the imple-
mentation provides the proper interfaces, it can participate
in the Data Management System and need not provide all
the other functionality as well. Actual deployment also de-
pends on the needs of the particular VO. It is possible to
share services across VOs, but we expect that each VO has
its own set of catalog services.

DATA MANAGEMENT
The Data Management subsystem has the following

components (see Figure 3 in [4]):

Data Scheduler From the VO’s point of view the Data
Scheduler is a single central service. It may actually
be distributed and there may be several of them, but



that depends on the implementation. It is responsible
for scheduling and keeping track of the data transfers
and catalog operations between multiple sites.

Transfer Fetcher The Fetcher polls the available DS for a
given VO and checks for transfers where the target is
an SE at a local site. It takes the transfers from the DS
and submits them into the FPS. (Pulling requests from
DS, pushing into FPS). So it acts as the connecting
service between the global DS and the local FPS.

File Placement Service FPS There is an FPS running at
each site making one logical instance per VO. It
coordinates the file transfers and the catalog opera-
tions, exposing atomic file replication operations to
it’s clients.

File Transfer Library FTL The FTL provides the API
interface to the data management operations available
to Grid clients. It manages the client’s communication
with the FPS.

The Data Scheduler is a top-level service, keeping track
of data movement requests in a VO that are being submit-
ted directly by the user through a portal or user interface or
by computational jobs submitted to the Workload Manage-
ment Service. The Transfer Fetcher polls the Data Sched-
uler and fetches transfers whose destination is the local site
for the given VO, inserting new requests into the File Place-
ment Service. The File Placement Service coordinates the
transfer performed by the File Transfer Service and makes
sure that the File and Replica catalogs are updated properly.

This service breakdown has been chosen to keep the ser-
vices modular and dedicated to a well-defined task. Each
SE has a file transfer queue and an associated request
fetcher that polls each local FPS for jobs that target the
given SE. This is done behind the scenes, the user controls
the actual transfer solely by interaction through the FPS.
The SE transfer is the lowest-level service used here. It
deals only with the transfer of files between Storage El-
ements. The destination SE is explicitly specified in the
transfer request. Each SE runs only one such queue.

The File Placement Service FPS has the task to coor-
dinate the transfer with proper registration in the Cata-
logs. It monitors the progress of a transfer in the local
SE queue and will make sure that the catalogs are properly
updated, re-trying the operation according to well-defined
VO policies if necessary. Each VO has an FPS per site.
The user submits requests for transfer (implicitly including
the proper catalog operations) through the File Transfer Li-
brary API to the local FPS. If the transfer request does not
have a local SE as it’s destination, the FPS forwards the re-
quest into the VO’s global Data Scheduler. So it keeps it’s
task well-defined and simple.

The Transfer Fetcher is a component running at each
site, periodically polling the DS whether there are any
pending transfer requests that have the local site as it’s des-
tination. If yes, these requests are retrieved from the DS

and forwarded to the local FPS. Once the FPS completes
the request, the fetcher will update the DS to signal the
completion of the request.

The DS can also be contacted directly by the user
through the user interface. It keeps a persistent queue of
all requests. Other processes such as policy managers and
optimisers may operate on the same queue to refine the re-
quests.

This service breakdown, which is modelled after well-
understood mechanisms already in use by schedulers, en-
sures that the services are kept simple enough to maintain
a high reliability of the overall system.

SUMMARY
We have given a brief overview of the components that

make up the data management services in EGEE and de-
scribed the interface breakdown and some of the internal
interactions.

REFERENCES
[1] F. Carminati, P. Cerello, C. Grandi, E. Van Herwijnen,

O. Smirnova, and J. Templon. Common Use Cases for a
HEP Common Application Layer – HEPCAL. Technical
report, LHC Computing Grid Project, 2002. http://

project-lcg-gag.web.cern.ch/project-lcg-gag/

LCG_GAG_Docs/HEPCAL-%prime.pdf.

[2] F. Carminati and J. Templon (Editors). Common Use
Cases for a HEP Common Application Layer for Analysis –
HEPCAL II. http://lcg.web.cern.ch/LCG/SC2/GAG/
HEPCAL-II.doc.

[3] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Services Description Language (WSDL) 1.1.
W3C, March 2001. http://www.w3.org/TR/wsdl.

[4] et.al E. Laure. Middleware for the Next Generation Grid
Infrastructure. In 2004 Conference for Computing in
High-Energy and Nuclear Physics (CHEP 04), Interlaken,
Switzerland, 2004.

[5] EGEE. EGEE Middleware Architecture. EU Deliverable
DJRA1.1, July 2004.

[6] EGEE Application Working Group. Biomedical Appli-
cation Requirements. https://edms.cern.ch/file/

474424.

[7] The Web Services Interoperability Organization. WS-I Doc-
uments. http://www.ws-i.org/Documents.aspx.

[8] Andreas-J. Peters, P. Saiz, and P. Buncic. Alienfs - a
linux file system for the alien grid services. ECONF,
C0303241:THAT005, 2003.

[9] David Sprott and Lawrence Wilkes. Under-
standing Service-Oriented Architecture. http:

//msdn.microsoft.com/library/default.asp?

url=/library/en-us/dnmaj/%html/aj1soa.asp.

[10] SRM 1.1. http://sdm.lbl.gov/srm.wsdl.

[11] GGF OGSA WG. The Open grid Services Architecture,
Version 1.0 (draft 016). https://forge.gridforum.

org/projects/ogsa-wg.


