THE HIGH LEVEL FILTER OF THE H1 EXPERIMENT AT HERA

A. Campbell, S. Levonian, DESY, Hamburg, Germany
M. Vorobiev, ITEP, Moscow, Russia

Abstract

We present the scheme in use for online high level
filtering, event reconstruction and classification in the
H1 experiment at HERA since 2001.

The Data Flow framework (presented at
CHEP2001[2]) will be reviewed. This is based on
CORBA for all data transfer, multi-threaded C++ code to
handle the data flow and synchronisation and fortran
code for reconstruction and event selection. A controller
written in python provides setup, initialisation and
process management. Specialised java programs provide
run control and online access to and display of
histograms. A C++ logger program provides central
logging of standard printout from all processes.

We show how the system handles online preparation
and update of detector calibration and beam parameter
data. Newer features are the selection of rare events for
the online event display and the extension to multiple
input sources and output channels.

We dicuss how the system design provides automatic
recovery from various failures and show the overall and
long term performance.

In addition we present the framework of event
selection and classification and the features it provides.

BACKGROUND AND MOTIVATION

The electron proton collider HERA at the DESY
laboratory in Hamburg and the HI experiment[]]
completed major upgrades in 2001. To cope with
increased demands on data processing a new high level
filter sytem was developed combining the functionality
of the specialised VME (L4) and mainframe systems
(L5) to a single system based on networked linux PCs
(L45).

REQUIREMENTS

The framework must be capable of transferring a
stream of events from a source (or multiple sources)
through multiple processing tasks and out to one or more
sinks. A source may be a selection of events from a
sequence of files or online data from the H1 experiment.
A sink may be disk or tape files or a special data logging
task. It must be possible to require that certain groups of
events from the input stream remain grouped on the
output stream, for example events from different data
taking runs must not be mixed despite the large
variations in processing time between events. The
online L45 filter task must be capable of maintaining a

continuous input data rate of 7 MB/s and output rate of 4
Mbytes/s. The data throughput should be independent of
individual event sizes which vary greatly from several
hundred kilobytes for complex e-p interaction events to
just a few bytes for special calibration records or
compressed data summary format events.

In addition to event data, calibration constants must be
distributed to the processing nodes ahead of the data to
which they apply. For the L45 filter a few calibration
constants may be changed on a short timescale for
immediate use from a particular event number within a
run. The L45 filter program is based on the full
reconstruction program (hlrec) which consists of large
Fortran code for charged particle and calorimeter shower
identification. Event data BOS banks are transfered in
the H1 specific machine independent FPACK format and
monitor histograms are stored in the H1 specific LOOK
package. Especially for online L45 processing we
require to access for immediate display the monitor
histograms filled within the Fortran code. In addition
histograms must be collected from all processing tasks,
summed and stored on a per run basis.

As the L45 processing and filtering step is run on raw
data from HI1 before storage on persistent media a
certain degree of robustness against program and
machine failure is required. In particular a crash of the
full reconstruction program hlrec should not lead to a
loss of events and a new process should be started
automatically. Failure of complete machines should be
recoverable without halting the data flow, and it must be
possible to add additional processors at any time. In the
rare case of the failure of a complete machine some data
loss is tolerable as long as it can be quantified.

IMPLEMENTATION TOOLS

We choose to base our implementation on CORBA.
This has several major advantages over raw sockets and
message passing infrastructures as parameter marshaling
code is generated automatically, connection setup is
handled completely by the ORB, the remote calls are
machine architecture and language independent, and
calls are unaware if the objects are local or remote
(location independence). A performance comparison of
several freely available CORBA implementations led us
to choose omniORB[4] as basis for the main dataflow
infrastructure due to the excellent data transfer
throughput and the small footprint as well as the strict
standards compliance. We use omnipy python scripts and
jdk1.4 and JAS[5] for online histogram browsing.

Data Flow

DRSS

/Y

LEGEND

l Event

Event Sequence

—>» —
/v READERS § .
Barrier
WRITERS
EVENT REPOSITORY .
Barrier
FIFO

with attached data

Persistent Barrier Cache

Figure 1:CORBA Event Repository

THE EVENT REPOSITORY

The dataflow is organized by data transfer between
CORBA event repository objects[3]. The event
repository is basically a first-in first-out event store
which may be read and written in a manner similar to
sequential file access. Events are actually stored in the
repository as suitably large sequences instead of
individually and entire sequences are transfered between
repositories over the network to enable high throughput,
independent of event size. An event repository with its
reader and writer tasks is depicted in Figure 1.

Multiple readers can read simultaneously from the
same repository to receive subsequent event sequences.
The multiple reads are handled by separate ORB server
threads per client machine with only a short mutually
exclusive section to remove a sequence pointer from the
repository FIFO buffer. No expensive data copying is
required. Similarly multiple writers can hand over event
sequences to the repository simultancously. Hence
repositories are used for both event distribution and
collection.

A method is needed to separate the event flow into
blocks such that events stay within a block. All output
events within a block must reach their final destination
before events from the next block, although events
within a block may be dropped as is often the case in the
L45 filter application. Practically block boundaries are
start and finish of data taking runs in the case of online
processing and the start and end of data files for offline
processing. Additional block boundaries may mark eg
every hundredth calibration pulser event to trigger the
preparation of a new calibration.

To support this synchronisation of the event flow the
repository implements barriers. Like event sequences
barriers are inserted into the repository FIFO store. A

barrier is assigned an incremental number when it is first
written to its source repository and retains this number as
it is transferred from repository to repository.
Synchronisation is obtained by requiring that all writers
write a barrier before any readers can read it. Further
writers can continue to write event sequences in front of
a barrier which has already been written by another
writer. As soon as all writers have written a particular
barrier that barrier becomes readable. Unlike event
sequences barriers are not removed from the repository
until they have been read by all readers.

However a given reader can read event sequences (or
further readable barriers) behind barriers which they
have already read. Only when all readers have read a
barrier is it removed from the repository. Hence each
barrier is distributed to all processing units and
recombined at the final sink repository. As data events
cannot skip across a barrier this ensures the required
synchronisation. Of course the repositories must be
sufficiently large and the barriers sufficiently infrequent
so that the overall data flow is not hindered.

In order to support insertion of additional processing
units in an established data flow readers and writers must
perform an open (or login) operation on the repository.
This makes a contract with the repository to provide/read
all barriers from a particular barrier number. Attachment
to the dataflow is a 3 step process; first the downstream
repository is contacted and a contract made to deliver the
front-most non-readable barrier (or next barrier to come
if no barrier is present in the repository), then the
upstream repository is opened and a promise made to
read the front-most barrier, and finally the contract with
the downstream repository is modified to correspond to
the barrier which is now known from the upstream
repository. Similar care must be taken to cleanly detach
from the dataflow and a method is required to logout

Hl

Barrier and calibration constants insertion

LEGEND

g::ié Computcr
‘ Q Process
3

|:| RePo sitory

TAPE

Figure 2:Overall L45 Data Flow

readers and writers from repositories in the case of
abrupt abortion of a task. This is one of the
responsablities of the controller framework described
below.

Each barrier contains a type indicating its meaning eg
start-of-run, end-of-run, end-of-dataflow. As a barrier
flows through the processing code it can trigger special
actions, for example the end-of-run barrier triggers the
creation and output of run histogram records to the
output repository for subsequent summing and logging at
the data sink. The special end-of-dataflow barrier causes
the shutdown of the containing process on its removal
from all its repositories.

As barriers are "broadcast" to all processing units and
mark a timestamp in the dataflow we can use them also
as an elegant mechanism for distribution of calibration
and geometry constants to the processing nodes by
attaching data records to them. If we introduce a barrier
with attached calibration data this data can be received
and kept in the analysis program and is therefore
available for the processing of subsequent events. Hence
we avoid separate requests to the central database from
the many processing tasks and ensure that the same
constants are used by all processing units even if the
database is updated in the meantime. This mechanism
allows also the timely distribution of run settings for
online data which are not yet stored in the central
database, as well as the introduction of new "constants"
from a particular event number within an ongoing run as
is for example required in the case of a sudden shift of
the collision vertex within the H1 detector.

In order to ensure the availability of the correct
calibration constants to processing units inserted into an

established dataflow barrier records with attached data
are not deleted when they are removed from a repository
but instead are inserted in the associated persistent
barrier cache replacing there any older version of the
barrier data. A new reader reads first all barriers from the
barrier cache before continuing to read from the
repository,thus receiving all necessary calibration data.

OVERALL DATAFLOW

The overall dataflow is shown in Figure 2 for the L45
filter application with online data input from the H1
experiment. Data flows from the data acquisition system
via a TCP socket as a stream of FPACK physical records.
The input node converts this stream into event sequences
and writes it to its repository. A set of 20 dual processor
nodes run 3 processes each; a single i/o task containing
both input and output repositories for the 2
reconstruction and filter processes L45. Each L45
process reads just a single event at a time and a copy of
the event is kept within the i/o task so that it is not lost
should the L45 process abort. The output repository
handles the main output event stream and extra
calibration records created within 145. Additional
threads within the i/o task pull data from the input
node(s) and push data to the output nodes. The output
node can update calibration constants and insert them as
barriers to the current dataflow by request to the input
node. For offline analysis programs the i/0 and
processing tasks can be easily combined in a single
process due to the location independence of CORBA
objects.

ENVIRONMENT

To facilitate the launching and control of the processes
over all nodes a controller framework has been
developed. A master controller process is started on the
initial node and a slave controller is launched on each
node on which dataflow processes should be started via
ssh. Requests to the master controller from a python
script initiate all processes. The local controller daemons
can take appropriate action in the case of death of child
processes such as informing the connected repositories
and restarting. In addition the controller daemons
distribute initialisation parameters, assign unique process
identifiers, and maintain lists of all CORBA objects such
as repositories and histogram server objects. The master
controller object is entered in the CORBA name service
and thus acts as a single access point for all objects
within the distributed job.

We have developed a comfortable histogram display
tool based on JAVA and JAS[5] capable of collecting in
real time the histograms from the running reconstruction
programs for comparison to reference histograms
allowing immediate data quality checks. In addition web
access to histograms is developed via a python script
based on twistd[6], biggles[7] and SVG.

Further monitoring of the data flow is provided by
timestamped log files recording state changes in the
repositories (empty , full , barrier entry). This allows
for diagnosis of bottlenecks and hangups in the dataflow.

FILTER ALGORITHM STEERING

The filter algorithm executed in L45 is defined in text
supplied along with the calibration and geometry data
and stored in the database for bookkeeping. The text
consists of some definition sections and a sequence of
trigger statements which define the algorithm.

First code modules are named (eg CJC for central jet
chamber track reconstruction) together with a list
variables which can be computed after execution of the
module and a list of dependent modules (eg QT must
run before CJC). Next trigger masks are defined to
allow statements to act on a set of L1 triggers eg all track
triggers.

The algorithm is specified by a sequence of trigger
statements. A trigger statement has a name, a list of
conditions on variables (true/false, ><= a value) and an
action. Conditions are evaluated from left to right by
executing the modules associated to the specified
variables (unless they have already been executed for
this event) and requesting the evaluation of the variable
by the module. As soon as a condition is false the
algorithm jumps to the next trigger statement. If all
conditions are true the specified action is taken:
accept,reject or reset mask. The reset mask action
causes reset of the mask bits in a copy of the L1 trigger
result and leads to a reject if all resulting bits are zero. In
addition the action can specify a fraction to provide

output of rejects for monitoring purposes (or scaledown
of accepts) and an optional continue condition which
causes only evaluation of the statement but no action (
for evaluation of new statements). Hence the algorithm
can be modified without recompilation of the L45 code
and it is guaranteed that execution time is minimised as
only the modules needed to take the trigger decision are
executed.

Finally actions to be taken on accepted events are
specified (typically execution of all modules) and a
histogram section specifies ranges for timing histograms
of modules and variables which should be histogrammed
either on evaluation or within a specific trigger statement
only. Histograms are automatically filled to record the
result of all conditions in all statements allowing full
monitoring and the evaluated variables are added to the
event data.

STATUS

The tools described are in production usage since the
startup of HERAII datataking in 2001. Since then 27TB
have been processed. The system has proven to be very
stable and typically runs without manual intervention
constantly for several weeks.

ACKNOWLEDGEMENTS

We gratefully acknowledge in particular the enormous
contribution of J.Nowak in implementing the event
repository.

REFERENCES

[1] H1 Collaboration,"The H1 detector at HERA",NIM
A 386(1997)310.

[2] A.Campbell et al," A Dataflow Meta-computing
Framework for Event Processing in the H1 experiment",
Proceedings CHEP'01

[3] J.Nowak,"Data distribution system for the DESY/H1
experiment analysis",MSc Thesis,University of Mining
and Metallurgy,Krakow,Poland

[4] http://omniorb.sourceforge.net

[5] A.S.Johnson,"Java Analysis Studio",
http://jas.freehep.org

[6] http://twisted.sourceforge.net

[7] http://biggles.sourceforge.net

