
XML I/O IN ROOT

S. Linev#, H. Essel, GSI, Darmstadt, Germany
R. Brun, FNAL, CERN, Geneva, Switzerland

Abstract

This paper describes recent development in XML I/O in
ROOT, which allows storing and retrieving objects from
XML files. XML format makes’ easy to view and edit the
objects data directly. Several implementation aspects and
usage of ROOT XML files as exchange format between
different applications are discussed.

MOTIVATION
XML (eXtensible Markup Language) provides well

structured text data format, which can be viewed and
edited with standard text editing tools. Now XML is
widely used as a storage format for different kinds of
metadata likes configurations, parameters, conditions,
geometries etc. Another application field for XML is
exchange format between different platforms and
frameworks. But most frameworks implement XML I/O
by themselves, frequently introducing new definition for
XML file structures.

The ROOT framework has a powerful I/O system, but
had support for binary file format only to store and read
objects. Without the ROOT environment the data stored
in such files were not directly accessible. Therefore one
decides to provide possibility of XML I/O to ROOT.

IMPLEMENTATION

Used XML package
There are general-purpose XML packages, which

provide wide range of functions for manipulation with
XML files. One can mention several C/C++ based
packages:

• expat from Mozilla project [1],
• libxml from Gnome [2],
• Xerces-C++ from Apache [3].
Typically such packages make parsing and validation of

XML files and provides full access to each element of
XML tree. Performance benchmark for these and several
other packages is shown on Figure 1 [4]. It shows
execution time for different operations like parsing XML
files, building document in memory, validating XML files
with DTD and so on.

These packages have obviously different performance.
They also differ in support of advanced features like XML
schema, XSLT and so on. With regard to performance and
functionality requirements libxml2 package was chosen to
be used in ROOT.

Figure 1: Benchmark between XML packages.

New classes in ROOT
A TXMLEngine class was introduced to provide a

narrow interface to libxml2 library. This keeps us a
possibility to implement similar interface with other XML
packages if required.

Main changes were done in TBuffer class. Most of its
functions, which translate basic data types to binary
representation, were declared virtual. Derived
TXMLBuffer class was introduced to allow translation of
such basic types to XML nodes and attributes. Making a
lot of functions virtual leads up to 1÷5% performance
penalty in case of intensive I/O application.

The TXMLFile class, inherited from TFile, provides
standard ROOT interface to file, where several objects
can be stored.

One should mentions that before any data can be read
from any XML file, all XML structures from this file will
be allocated in memory. This imposes limitation on the
size of file. Typically, file size should not exceed limit of
100 MB.

A short example to create XML file is shown on
Figure 2.

Figure 2: Script to create XML file.

Example shows usage of static TFile::Open() method,
which internally invokes ROOT plug-in manager. If name

void example() {
 TNamed named("ObjectName","ObjectTitle");
 TBox box(0.0, 0.0, 1.0, 1.0);
 TFile* fxml=TFile::Open("example.xml", "recreate");
 named.Write("named");
 box.Write("box");
 delete fxml;
}

 #S.Linev@gsi.de

of file contains “.xml” extension, TXMLFile instance will
be created.

Since May 2004 XML classes are included in ROOT
distribution.

Supported features
“Native” ROOT I/O interface is provided. This means,

that most of user I/O code should not be touched. Only
creation of TXMLFile instance should be done exlusevely
or via TFile::Open() method.

Except very special objects, like TTree and TBranch,
most of ROOT classes are supported by XML I/O.

Classes with custom streamers are also supported. The
limitation in that case is, that reading and writing
sequence should correspond to each other. If user writes
array of integer values, array of integer should be read
and not array of bytes or doubles. In fact, a number of
ROOT classes use custom streamers, therefore support of
custom streamers was strongly required.

Two different layout options are supported – generic
and class-specific. In first case only several node names
are allowed: “Object”, “Class”, “Member”, “Item” (see
Fig. 3). All class-dependent information is coded in nodes
attributes. For that case DTD (Document Type Definition)
is short and simple. In second case names of XML tags
are derived from class names and class members names.
This makes XML more clear and readable. DTD,
generated for such file, includes special part for each used
classes, and provides very strict syntax check by standard
XML tools. Example of class-specific layout with enabled
namespaces is shown on Figure 4.

Figure 3: Example of generic layout (TBox class).

Figure 4: Class-specific layout with namespaces.

DATA EXCHANGE
Main motivation for this development was the

possibility to exchange data between different kinds of
applications. Let’s consider different approaches.

Communication between ROOT applications
This is a situation when XML I/O can be applied

directly. Both ROOT applications require only to have
same dictionaries. The advantage compared to standard
ROOT I/O is that data in XML files can be viewed and
edited. Of course it should be taken into account that big
data volumes can be problematic in XML files.

Import data from C++ program
In that case one would like to get data from C++

application, which internally does not use any ROOT
classes and ROOT I/O. This can be done with special
TXMLPlayer class.

The algorithm how user can get possibility of XML I/O
in it’s application shown on Figure 5.

Figure 5: Generation of XML streamers.

 ROOT
Dictionary

TXMLPlayer streamers xml
file

C++ code
User classes

TXmlFile

1.

2.

3.

4. 5.

<Object class="TBox">
 <TBox xmlns:TBox="http://..." version="2">
 <TObject fUniqueID="0" fBits="3000000"/>
 <TAttLine xmlns:TAttLine="http://..." version="1">
 <TAttLine:fLineColor v="1"/>
 <TAttLine:fLineStyle v="1"/>
 <TAttLine:fLineWidth v="1"/>
 </TAttLine>
 <TAttFill xmlns:TAttFill="http://.." version="1">
 <TAttFill:fFillColor v="19"/>
 <TAttFill:fFillStyle v="1001"/>
 </TAttFill>
 <TBox:fX1 v="0.000000"/>
 <TBox:fY1 v="0.000000"/>
 <TBox:fX2 v="1.000000"/>
 <TBox:fY2 v="1.000000"/>
 </TBox>
</Object>

<Object class="TBox">
 <Class name="TBox" version="2">
 <Member name="TObject">
 <Item name="Version" v="1"/>
 <Item name="UInt_t" v="0"/>
 <Item name="UInt_t" v="50331648"/>
 </Member>
 <Member name="TAttLine" version="1">
 <Member name="fLineColor" v="1"/>
 <Member name="fLineStyle" v="1"/>
 <Member name="fLineWidth" v="1"/>
 </Member>
 <Member name="TAttFill" version="1">
 <Member name="fFillColor" v="19"/>
 <Member name="fFillStyle" v="1001"/>
 </Member>
 <Member name="fX1" v="0.000000"/>
 <Member name="fY1" v="0.000000"/>
 <Member name="fX2" v="1.000000"/>
 <Member name="fY2" v="1.000000"/>
 </Class>
</Object>

Algorithm consists of following steps:
1. Generate ROOT dictionary of user classes
2. Using TXMLPlayer class, create streamers for

user classes
3. Add generated streamers and TXmlFile class to

user project
4. Use “ROOT-like” interface to access XML files

from user application
5. At the same time ROOT can access data from

XML files, using classes dictionary
Generated streamers provide functionality to

serialize/deserialize object data. Only following data
members in user classes are supported:

• basic data types, arrays, const char*
• objects, object pointers
• array of objects, array of objects pointers
• STL string, vector, list, deque, set, map, multimap
No any dictionaries or TClass objects are used inside

streamers. The streamer resolves class inheritance tree
using only standard C++ type_info information.

Streamer function does not appear as method of
appropriate class, therefore they have special treatment
for private and protected data members. This requires
knowledge how object data is represented in memory,
therefore such code cannot be directly ported on other
platform. User should have different code to read XML
files under Windows or Linux or Solaris, but the format of
XML file is preserved for any platform.

An appropriate example is avaliable at [5]. It provides a
makefile for generation of streamers and includes code to
access XML files from user application. Example
includes several classes which demonstrate most of
supported data members.

Export data from ROOT application
This situation supposes that the user has a running

ROOT-based program with developed I/O for its own
classes. Most probably, these classes include or inherit
ROOT classes like TObject, TString, TObjArray, etc. The
problem is to access this data from an application which
doesn’t know any ROOT classes and doesn’t include any
ROOT I/O libraries.

One probable solution is avoids the usage of ROOT
classes inside user classes. This leads us to previous case,
but this cannot be considered as general solution. One

needs a possibility to deal with data derived from ROOT
classes outside ROOT.

Currently there is no solution for such case, but some
ideas can be considered. One can generate class
definitions for user code, where dependency from ROOT
is excluded and ROOT containers (TString, TArray,
TList) are replaced by correspondent STL containers
(stl::string, stl::vector, stl::list). Of course, one cannot
support all ROOT classes, especially like TTree, but for a
finite classes subset implementation can be done.
Investigation of real user requirements should be done
before any code can be implemented.

Access to existing non-ROOT XML files
Frequently one needs to access data in existing XML

files, which are not created by ROOT and imposes
another structure of XML tags and attributes. This is the
most demanding problem, while there is no general
solution for that case. One can support some of typical
and simple cases only, e.g. the XML file contains
structures like telephone book or library catalogue.

In such case one can try to declare a class which
corresponds to the structure of XML file. Probably one
needs a certain level of “customisation” of XML-file
structures to allow assignment between data members and
names of XML tag where these members are stored. Also
required is a functionality to read/write such structures
directly, without unnecessary ROOT overhead like list of
keys, class version number and so on. Further
investigations and user suggestions are still required.

CONCLUSION
Generic XML I/O was developed for ROOT. It includes

support of data exchange with other non-ROOT
applications. Further developments are necessary to fulfill
all user requirements.

REFERENCES
[1] http://expat.sourceforge.net
[2] http://xmlsoft.org
[3] http://xml.apache.org/xerces-c/
[4] http://xmlbench.sourceforge.net
[5] http://www-linux.gsi.de/~linev/reader.tar.gz

