GRID COLLECTOR: USING AN EVENT CATALOG TO SPEED UP USER
ANALYSIS IN DISTRIBUTED ENVIRONMENT

Kesheng Wu, Arie Shoshani, Lawrence Berkeley National Lab, Wei-Ming Zhang, Kent State
University, Jerome Lauret, Victor Perevoztchikov, Brookhaven National Lab

Abstract

Nuclear and High Energy Physics experiments such as
STAR at BNL are generating millions of files with
PetaBytes of data each year. In most cases, analysis
programs have to read all events in a file in order to find
the interesting ones. Since the interesting events may be a
small fraction of events in the file, a significant portion of
the computer time is wasted on reading the unwanted
events. To address this issue, we developed a software
system called Grid Collector. The core of Grid Collector
is an Event Catalog. This catalog can be efficiently
searched with compressed bitmap indices. Tests show
that Grid Collector can index and search STAR event data
much faster than database systems. It is fully integrated
with an existing analysis framework so that a minimal
effort is required to use Grid Collector. In addition, by
taking advantage of existing file catalogs, Storage
Resource Managers (SRMs) and GridFTP, Grid Collector
automatically downloads the needed files anywhere on
the Grid without user intervention.

Grid Collector can significantly improve user
productivity. ~ For a wuser that typically performs
computation on 50% of the events, using Grid Collector
could reduce the turn around time by 30%. The
improvement is more significant when searching for rare
events, because only a small number of events with
appropriate properties are read into memory and the
necessary files are automatically located and downloaded
through the best available route.

INTRODUCTION

High-Energy and Nuclear physics experiments are
producing a large amount of data. For example, the
experiment STAR at Brookhaven National Laboratory is
collecting millions of collision events and PetaBytes of
data every year [1]. Analyzing these large volumes of
data efficiently is a significant challenge.

In these datasets, the basic unit of data is a collision
event. The events are usually collected into files and files
are organized into directories according to experiment
parameters, such as time, trigger setup and magnetic field
scale. Because of the large data volume, a majority of the
data is stored on mass storage (tape) systems. Because
manually retrieving any significant number of files from
mass storage system is labor-intensive, error-prone and
time-consuming. These files are as inaccessible as files

distributed many miles away. This leaves only a small
amount of the data accessible for analyses. Many users
work around this limitation by designing their analyses to
use only data on disk. This limits analysis options and
limits user productivity. One major objective of Grid
Collector is to automate the access to data files on mass
storage systems and distributed over the Grid. The first
two success stories involving Grid Collector both make
heavy use of this particular feature.

Most of analysis jobs select a modest subset of events
and perform its computation only on these events of
interest. Users usually specify the events of interest as a
list of data files, a list of directories, or the name of a
predefined subset. Properly managing numerous subsets
is a very challenging problem, which is being addressed
now in the research community. Existing analysis
frameworks typically read all events in the named files
and directories. The user analysis code is required to
perform its own filtering to select the events of interest.
On many computer systems, especially those with many
users, the time to read events from disk is more than 95%
of the total execution time. Clearly, allowing users to
more precisely specify the events of interest and reading
only those selected events would reduce the total
execution time. This is the second major objective of
Grid Collector.

The core of Grid Collector is an event catalog. Similar
to a file catalog, an event catalog is a system of software
and data that associates each collision event with a
number of user-defined searchable attributes, such as
number of particles produced by the collision, total charge
of all particles, and number of primary tracks. In addition
to those attributes, our event catalog also contains the
necessary information to read the events from files. Since
the event catalog is expected to contain billions of
records, the efficiency of searching the catalog is
potentially a concern. Through our research, we have
identified a compressed bitmap indexing technique that is
capable of processing common filtering conditions very
efficiently. It allows us to answer common conditions in
a few seconds or less, which is insignificant compared to
the typical run time of analysis jobs.

Grid Collector builds an event catalog from existing
files, without requiring all data to be placed under a single
database management system (DBMS). It can be used
with a minimal amount of additional space and it requires
users to make only minimal changes to their analysis
codes to utilize the new functionalities. Compared with
the conventional approach of using DBMS, our approach

requires a minimal amount of change to the existing
analysis framework, while providing significant new
functionalities. This approach is well suited for on-going
experiments and experiments that have already decided

on their basic analysis frameworks. Future experiments
may consider building an event catalog using similar
underlying technology.

Figure 1. Schematics of Grid Collector.

Clients Servers
Grid Collector
—| | Index Builder File Locator || | Replica Catalog
— | In: STARtagfile | ||n: jogical name,
—| | Out: bitmap index Out: physical ()
- location | | Replica Catalog
EventC\ang /7 *
In: conditions Il=|!e ﬁchedluf!ltar
Out: logical files, n- physicatiiie
event IDs
7 HRM 1
NFS, local disk DRM F oos
HRM 2

OVERVIEW OF GRID COLLECTOR

Grid Collector is a set of software modules that
integrates an event catalog with an existing High-energy
analysis framework and a number of Grid software
packages to fulfil its design goals. It has two primary
design goals, one to automate accesses to remote files and
one to read only the selected events.

To retrieve any remote file, one has to reserve enough
disk space for the file, monitor the file transfers, recover
from any recoverable errors, retry an alternative source in
case of an unrecoverable error, and finally, remove the
file after use. If thousands of files were needed, these file
management tasks would be very tedious and time
consuming. A number of software packages have been
designed to address some of these file management tasks.
For example, most large experiments have their own file
catalogs and replica catalogs to keep track of files and
their copies distributed on different storage systems.
These catalogs are important for automating the file
accesses. A system that we use extensively is the Storage
Resource Manager (SRM), which composes of a Disk
Resource Manager (DRM) and a Hierarchical Resource
Manager (HRM). These software packages can manage
and retrieve files any where on the Grid including on

mass storage systems. In addition, DRM can cache
remote files and automatically reclaim the disk space after
use. This can enable streamlined analysis of a large
number of files that may not fit on disk at the same time.

To read only the events of interest, the event catalog
contains information necessary to access any particular
event in a data file. At this point, this feature uses run
numbers and event numbers, and is only available for
ROOT files [2]. Grid Collector works in a client-server
model. The server side manages the files and a client
library called the Event Iterator take the information from
the server and reads the selected events. The events are
passed to the analysis framework so that the user code can
proceed as usual.

At the high level, Grid Collector has two sets of disjoint
functions, one for administration of the event catalog and
one for user analysis. The files needed for building the
event catalog and those needed for user analyses are
managed through DRMs. The user analysis code invokes
the Event Iterator, which allows the user to access
transparently the events of interest, without explicitly
knowing the names or the locations of the files involved.
The files used are not required to be under the
management of any DRM. If a file is on a NFS system
that is accessible to the client program or on a local file

system on the client machine, Grid Collector will instruct
the Event Iterator to use the file. For a file that is not
available locally, Grid Collector can contact multiple file
catalogs and replica catalogs to determine an appropriate
location to retrieve the file.

EVENT CATALOG

A key component of Grid Collector is the event catalog.
It holds searchable attributes of events, information about
how to locate the file, and how to read the event within
the file. With the information, one can specify conditions
on the searchable attributes and get back information on
how to retrieve the selected events. A number of
experiments have previously explored the idea of building
event catalogs; however, most have given up on this
approach. An obvious way of building an event catalog is
to put all the data into a commercial DBMS. However,
this approach is expensive. Most freely available DBMS
systems are not able to handle the large volume of data
produced from a typical experiment. Frequently, the
experiments use a free DBMS system to implement their
file catalogs and replica catalogs. An event catalog would
have 100 to 1000 times more records than the file
catalogs. Because of their large sizes, a significant
challenge in implementing an event catalog, commercial
or otherwise, is how to search the catalog efficiently.

The general technique for speeding up searching of
large datasets is indexing. Recently, we implemented an
efficient compressed bitmap index for searching large
datasets. Complexity analyses show that our compressed
bitmap indices are in fact optimal for one-dimensional
range queries. The time complexity of answering these
one-dimensional range queries is a linear function of the
number of hits [4]. Only few especially efficient indexing
schemes, such as B+-tree, have this optimality. Since the
results of one-dimensional queries can be efficiently
combined to answer multi-dimensional queries, this
optimality implies that compressed bitmap indices are
also efficient for multi-dimensional range queries. The
same is not true for B+-trees. Performance measurements
on a variety of datasets demonstrated that the compressed
bitmap indices are significantly more efficient than other
indices not only on one-dimensional range queries but
also on multi-dimensional range queries.

B-tree Projection Bitmap
Size (MB) 408 113 186
Query 1-dim 0.95 0.51 0.02
processing2-dim 2.15 0.56 0.04
(seconds) 5-dim 2.23 0.67 0.17

Figure 2. The sizes and average query processing time
on a subset of STAR data with 2.2 million events and
12 commonly used attributes.

The table in Figure 2 is a summary of the performance of
three indexing schemes, a B-tree from a commercial
DBMS, a projection index and our compressed bitmap
index. In most applications, the projection index is the
most efficient one for multi-dimensional range queries.

The average query processing time reported in the table is
an average over 1000 range queries with randomly
generated range conditions. The same queries are
answered with all three indexing scheme. A client
program generates the queries and measure the query
response time of the different indexing schemes.

5-attribute queries

0
’8‘ wpeo
2 foiom i i i B et Kmm i XHim
[
£ 1]
>
£
0 -1
@10}
Q q
S
o
Fad
o -
g- —&— bitmap
107} -3 - projection
----- B-tree
10° 10° 10" 10° 10° 10"
query size
Figure 3. The average time used to answer 5-

dimensional queries with different indexing schemes.

Figure 3 shows the query processing time using the same
three indexing schemes on some S5-dimensional range
queries. The horizontal axis in the plot is the query size,
which is measured as the fraction of the domain of the
attributes selected by the range conditions. For example,
let the number of primary tracks have a domain of 0 to
10,000 and zdc1Energy have a domain of 0 to 200, then
the size of query ‘number of primary tracks > 5,000 and
10 < zdc1Energy < 20’ is 0.025.

From Figure 2 and Figure 3, we see that the compressed
bitmap indices are at least three times as fast as the
projection indices, and are at least ten times as fast as the
B-tree in the particular commercial DBMS. Though the
particular dataset used in the performance test is relatively
small, the relative performance differences are typical of
many performance tests [4].

GRID COLLECTOR PERFORMANCE

One of the main reasons for developing Grid Collector
is to speed to the analysis of events of interest. In this
section, we measure how it actually performs on a set of
STAR data [1]. We selected three runs from a recent 62
GeV production. Without Grid Collector, users usually
have to form events of interest by naming files or
directories. In STAR, users may also use the Scheduler to
form events of interest based on runs. Since this option is
the closest to the option provided Grid Collector, we use
the time required to read all events in a run as the base
line for measuring the speedup of Grid Collector. Since
the number of events in each run varies widely, we have
chosen only to show the speedup numbers rather than
actual time. Figure 4 shows the speedup measurements

on a Linux box with Xeon 2.8 GHz processor and 1 GB
of main memory.

If a small fraction of events is selected, the speed up is
large. For example, when one in 1000 events is select,
the speedup can be from 20 to 50. Many analyses select

1000

—t— ampl |
el ample 2

(-3 100 Sample3 [T |

=

=

D

D

> 10

1
0.00001 0.0001

0.001 0.01
selectivity

0.1

speedup

10% to 50% of events of a run. In such a case, Grid
Collector also speeds up the analyses. If 50% of events
are selected, the speedup is more than 1.5, and if 10% of
events are selected, the speedup is more than two.

5

m\ g S ample 1
4 Sample2 ||
3 * : ey Sample3 | |
2
1
0

0 0.2 0.4 0.6 0.8 1

selectivity

Figure 4. Using Grid Collector can significantly speed up the reading of events of interest.

Clearly, many factors can affect the actual speedup
observed in a particular analysis. First among which is
the organization of the files involved. In our tests, the
data files are compressed ROOT files. When accessing a
random event in a file, other events are read as well
because the compression is applied on a group of events
at a time. In this case, a redesign of the structure of the
ROOT files could make it significantly easier to read a
random event, and therefore make Grid Collector even
more efficient.

SUCCESS STORIES

Our first two users are two STAR users who have done
some preliminary analyses on a large number of events to
search for anti-;He (Lee Barnby) and indications of
stranglets (Aihong Tang). In both cases, the preliminary
analyses have produced a few hundreds of interesting
events. The preliminary analyses were performed on
higher-level summary data files. The next step of
analyses requires the event data rather than the summary
data. Each event data file is much larger than the
corresponding summary data file, and these event files are
on the mass storage system at Brookhaven Lab. In
addition, there is no easy way to identify the particular
files that contain the interesting events. Most likely, the
event files for all runs containing the events of interest
will have to be retrieved from the mass storage system.
For each analysis to continue, many thousand of large
event files will have to be retrieved. It is hard for the
users to find enough disk space to store all the files. In
addition, the process of retrieving these files and
manually recover from any error is very tedious and time
consuming. For these reasons, the second step of the
analyses was put on hold until Grid Collector become
available. Using Grid Collector, the process of reading
the events of interest and writing them out for further
analyses took only a few hours. In these two cases, Grid
Collector enabled user to perform analyses that was
previously nearly impossible to do. Most other cases are

not as dramatic as these two; however, the reduction in
turn-around time for analyses is significant.

SUMMARY

Grid Collector was designed to address two major
needs in analyses of high-energy physics experiment data,
namely the need to work with remote files transparently
and the need to access only the events of interest. The
key technology that enables Grid Collector to fulfil these
needs is the event catalog and the ability to search for
events of interest efficiently. Our event catalog uses an
efficient bitmap index that is ten times faster than
commonly used indexing techniques and at least three
times faster than the best-known technique. Because the
searching time is usually small, using Grid Collector to
read any subset of events is aster than reading all events
in the files involved. Grid Collector can significantly
improve user productivities by making hard analyses
practical and making routine analyses faster.

ACKNOWLEDGEMENTS

This work was supported by the Director, Office of
Science, Office of Laboratory Policy and Infrastructure
Management, of the U.S. Department of Energy under
Contract No.~DE-AC03-76SF00098. This research used
resources of the National Energy Research Scientific
Computing Center, which is supported by the Office of
Science of the U.S. Department of Energy.

REFERENCES

[1] http://www.star.bnl.gov/.

[2] http://root.cern.ch/.

[3] D. Zimmerman. The design and implementation of the
STAR tag database, CHEP 98, 1998.

[4] K. Wu, E. Otoo and A. Shoshani. On the
performance of high cardinality attributes. VLDB
2004.

