
OpenScientist. Status of the project.

G. Barrand, LAL, Orsay, France∗

Abstract

We present the OpenScientist project [1] ; its basic
driving rules, the technological choices and the modules
that permits to visualize various source of HEP data. We
present OpenPAW, an emulation of the CERN PAW pro-
gram. At the end, we compare to ROOT, examine the po-
sition of LCG and terminate by interogating the role of
CERN in software for physic.

WHAT IS OPENSCIENTIST ?

OpenScientist is first of all an INTEGRATION of pack-
ages working together to do scientific visualization and
data analysis. It is NOT one million of lines of home made
code and then not a reinvention of everything. In partic-
ular, it cannot be considered as another ”//The ROOT of
EVERYTHING” [2].

DRIVING RULES

This integration is driven by the following rules :

• Follow the ”software least action principle”. It con-
sists to reach a maximum of functionalities by mini-
mizing the number of home made code and number of
packages in general.

• For GUI and graphic, use what desktop providers offer
(to have full speed).

• For the rest, use a maximum of dedicated open source
software.

• Target the local user desktop machines. It means to be
fluent on Linux(es), MacOSX and Windows.

• Have a flexible architecture to be able to EVOLVE.
This is a crucial point for HEP knowing that doing an
experiment is a matter of decades.

C++

We stick to C++ because event model managers (data
frameworks) are in C++ and that C and its derivative
(C++, ObjectiveC) are still the native languages of desktop
providers for GUI and graphic. Any other language would
induce penalties in accessing data or local resources.

HAVE A FLEXIBLE ARCHITECTURE

This goal is achieved by having ”hub” packages to do
the coarse graining couplings and by using pure abstract

∗ barrand@lal.in2p3.fr

interfaces to minimize these couplings.

VISUALIZATION PRODUCTS

The rendering layer is done by using OpenGL which is
now supported by all desktop providers. As a scene man-
ager we have adopted OpenInventor by using the Coin3d
implementation of System In Motion (Norway) [3]. All
the graphic, 2D and 3D, is done with OpenInventor and
OpenGL. In particular the plotting of histogram is done
also with OpenInventor. This unification of all the graphic
permits to build interesting views like having a piece of de-
tector or part of an event in a plot, or immersing the plot of
an histogram in the display of an event.

GUI, A PAIN

Finding a good strategy for the GUI is a more painfull
situation since the ”OpenGL miracle” never happened
for the GUI. No standard API emerged from desktop
providers. This is due to the fact that desktop software
is still the horse battle of major actors : Microsoft with
Windows, Apple with Cocoa (in fact NextStep), GNU with
GNOME/gtk and KDE with Qt. If aiming the common
desktops around, the life of a developer become quickly
a nightmare when having to find a solution. WE NEED
SOME STANDARD API coming from desktop providers
(some common XML ?) .

GUI, THREE STRATEGIES

We may think to develop our own GUI toolkit (like
ROOT) but this will bring us back to the age of stone. We
may think to choose a cross platform toolkit, but at long
this appears to be a frustrating solution ; someone fond
of [Windows,Cocoa,KDE,GNOME] wants to use [Win-
dows,Cocoa,KDE,GNOME] on his machine.

Then we are going to try to use what desktop providers
offers, that is to say use Windows on a Windows, NextStep
on a Mac, Gtk on a Linux/GNOME, Qt on a Linux/KDE
and Motif on other UNIXes. Must be point out here that
Motif is still the fastest solution on a Linux... This way of
doing will offer obviously the best performances on local
machines. Fine, but then how to proceed ?

GUI IN XML, THE ONX PACKAGE

We have decided to describe the GUI in XML : widget
hierarchy and callbacks. For example, a piece of GUI looks
like :



<widget class="PushButton">
<label>My hello button</label>
<activate exec="Python">
from import OnX *;ui.echo("hello")

</activate>
</widget>

From an XML description of the GUI, the OnX package
creates it by using native toolkits.

OnX could be seen as some omni-interface-builder (from
an XML description of the GUI). Drivers exist now for
Xt/Motif, Windows, gtk, Qt and NextStep. OnX could be
seen also as a factory for these GUI toolkits. Note that
a huge difference with desktop provider interface builders
(glade, Qt-Builder) is that there is no code generation from
the XML (the XML being some internal file format for
these GUI builders). With OnX, the XML is part of the
application and visible from users. This permits obviously
a strong customization of the GUI without recompiling.

ONX AND INVENTOR

The strong point of OnX is that it does the integration of
Inventor viewers. This had been done by using the SoXt,
SoWin, SoQt, SoGtk, SC21 packages of System In Motion.
To create a viewing area, someone simply put in its XML :

<widget class="PageViewer"/>

The PageViewer is a sofisticated widget able to handle
multiple viewing regions (movable and resizable with the
mouse). Being an Inventor examiner viewer, it benefits
of the famous Inventor thumbwheels to manipulate a 3D
scene.

SCRIPTED CALLBACKS

In the XML, someone put also the widget callbacks. In
the upper example, a Python script is executed when click-
ing on the ”My hello button” button.

A lot of scripting system had been declared to OnX. The
C system function, permitted to spawn shell commands :

<activate exec="sys">ls</activate>

The dynamic loader :

<activate exec="C++">
OnX ui_echo hello

</activate>
<activate exec="C++">
MyDLL my_cbk arg1 arg2

</activate>

In the second activate, the extern C entry point my cbk is
searched in the MyDLL dynamicly loadable ”callback” li-
brary and executed with the following arguments (here arg1
and arg2). The my cbk code must be of the form :

extern "C" {
void my_cbk(IUI& aUI
,const std::vector<std::string>& aArgs) {
// User code
aUI.echo("my_cbk executed !!!");

}
}

the argument aUI permits to access all GUI components
and also the OnX ”ISession” that permits to access the
various OnX managers (ScriptManager, TypeManager, Li-
braryManager, MemoryManager in Lab, etc..) but also
managers declared by users. OnX comes with a default
OnX callback library containing various predefined call-
backs like the upper ”ui echo”.

Python had been declared to OnX. The wrapping of C++
code(for example abstract interfaces IUI, ISession, etc..)
is done by using SWIG. KUIP had been declared too (it
comes with OpenScientist). Someone can have :

<activate exec="kuip">
h/plot the_famous_10

</activate>

CINT had been declared too. By crossing fingers, someone
can execute :

<activate exec="CINT">
{AIDA::IAnalysisFactory* aida = ...}

</activate>

THE LAB PACKAGE. DATA ANALYSIS

OnX, by integrating GUI, graphic and scripting is the
”hub” package for interactivity. The hub package for data
analysis is the Lab package.

AIDA

Lab is AIDA-3.2.1 compliant [4]. Lab can produce
XML files containing histograms and tuples and then ex-
change these files with other AIDA implementations like
the jas one written in java. Lab can export also files at the
ROOT format with the histogram streamed like the TH of
ROOT. These files are readable by jas and ROOT.

HCL histograms

The LAL HCL package is used for histograms. It is a
light and dedicated package that appears to be 20 percent
faster than the ROOT TH classes. The difference of speed
comes to the fact that HCL uses internally std::vector which
appears to be faster in optimized mode than the TArray of
ROOT. The HCL::Histogram class is a truly multidimen-
sional histogram class over STL. In particular in HCL, a 1D
object does not have forever dummies TAxis fYaxis, fZa-
xis fields irrelevant for a 1D object that someone can find
in ROOT TH1 class ! The HCL::Histogram class does not
inherit graphical classes (like the THs that inherit TAtts).
The visualization of histogram is done in the Lab package
by using he HEPVis/SoPlotter nodekit.



Rio for storage

The LAL Rio is a light and clean package for doing IO
at the ROOT format. (What is a file at the ROOT format ?).
With it OpenScientist is now ROOT free. Note that in file
produced with Rio, the Lab::Histograms are not streamed
like ROOT TH histograms. This is due to the fact that a
HCL (or Lab or AIDA) histogram is more rich that a TH ;
then streaming it like TH would mean a loss of information.
For data exchange with ROOT (and jas) someone have to
use the ”export” format, so that histograms are streamed
like TH.

Fitting

OpenScientist uses now the C++/Minuit done at CERN.

Plotting

The plotting is done with Inventor, by using the SoPlot-
ter nodekit developed at LAL by the author and deposited
in the HEPVis CVS repository of Fermilab. This plotter
supports now most of the common plotting cases, in partic-
ular contour plotting and, obviously, 3D lego and surfaces.
The vector PostScript production is done by using gl2ps.

OPENPAW

The opaw program is an OnX application to emulate
PAW.

OS> opaw [my.kumac]
OS> opaw -gui [my.kumac]

OpenPAW could be seen as a PAW interactive front end to
AIDA and AIDA could be seen as the C++ API to Open-
PAW.

Commands

Due to the fact that KUIP had been taken (for long) from
the old CERNLIB and that the Pawcdf.cdf, describing PAW
commands, had been taken from old CERNLIB too ; some-
one has the SAME syntax as PAW. With OpenScientist-
13.0, the original pawex1.kumac up to pawex24.kumac had
beeen emulated with, in general, better performances on
most aspects. Obviously not all commands (and options)
are yet recovered but things are under way.

COMIS

COMIS had been replaced by ”on the fly” compilation
and loading. It works with FORTRAN but also with C and
C++ without having the burden of interpreters.

Vectors and SIGMA

Vectors and SIGMA commands are here too. Vectors
had been reimplemented by using Lib::Vector, a multidi-
mensional vector class over STL. The SIGMA command

had been done by using the Lib::Processor expression eval-
uator (done with lex and yacc). Note that when evaluating
something like V1*V2, the OpenPAW SIGMA command
loops internaly directly within std::vector, then ensuring a
maximum of speed.

OTHER MODULES

Geant4

The G4Lab provides visualization for Geant4 data : ge-
ometry, trajectories and physic tables. Geometry and tables
can be browsed in a GUI tree widget and leaf element be
clicked and displayed in the document area of the GUI.
Geometry are visualized by using Inventor and a physic
table is histogrammed and displayed by using the HEP-
Vis/SoPlotter.

Geant3

G3Lab provides visualization for Geant3 geometries.
Like Geant4 geometries, they can be browsed in a GUI
tree widget and displayed with Inventor by clicking leaf
elements. It is used at LAL on Windows and very appreci-
ated.

RELEASES

Experience shows that the use of dedicated open source
packages clearly minimize the coding and improve the
quality. But building the integration in order to come with a
consistent set of packages easily installable on three hetero-
geneous platforms is clearly not free of work. Up to now
OpenScientist is released twice a year, in June (summer re-
lease) and December (winter release). Major changes being
done in general in the summer release.

WHAT IS REALLY UPSETING IN ROOT ?

Too much flaws

We have already mentionned the TH1 having forever
dummies TAxis fYaxis and fZaxis (see AIDA for a better
design). The IO buffer accesses are not protected on over-
flow (Bytes.h, tobuf methods). Streamers do not have a re-
turn status in case of problem. On a corrupted file, the crash
(or exception carpet hiding) is unavoidable. Some simple
protection (done in Rio) would permit to treat the problem
in a clean way (stop the streaming, giveup this file, warn
the user, etc...). The TArray is definitely much slower that
an std::vector. The list of problem is long but probably the
most awkward is to find a Draw method on the basic intro-
spection system ! None of the object oriented language or
software that the author had in hand have that (C++, java,
ObjectiveC, Csharp, Qt, Inventor, NextStep, Python, etc...).
Is the TClass::Draw() a breakthrough in software coming
from HEP ? The author does not believe that.



Follow the maximum action principle

In ROOT, a maximum of things are home made. In
front of all good quality dedicated things available for free
now ; why, in 2004, do we have to burden forever badly
secretly designed and inefficient classes for storage, his-
togramming, GUI, graphic scene manager, string, math,
etc... ?

What is the place of home institute engineers in
ROOT?

It is difficult to accept the borrowing of CERN name [5]
for publicity whilst engineers of institutes that participate to
the CERN program had not been consulted on the overall
design and had seen their request for a major revision of
ROOT for the LHC put aside. The only task left for them
now for the next twenty years is the day to day debugging
of an ever growing home made production. The situation is
the same than being in front of a private company product.
Is CERN a private software company ?

The ”LCG uses ROOT” decision

CERN / LCG did not order a unification of engineering
researches done in various experiments around data frame-
works. This was definitely an historical mistake. It was
only a question to compel five to six men to put aside their
personal ambition and to work for six to twelve months
together on converging their results and products ; con-
verging being not the same that choosing one by eliminat-
ing others. In particular, this was the last hope to compel
a major revision of ROOT in order to federate engineers
(and not only physicists) around one appealing common
basement for the LHC. CERN HAD NOT BEEN ABLE
TO DO THAT. Instead came the ”LCG uses ROOT” deci-
sion. Already this decision induces an astouding amount
of complication at the level of the code. There are two
dictionaries ; the LCGDict, a dedicated introspection sys-
tem (fine) and the one embedded somewhere in CINT and
wrapped in the ROOT TClass(::Draw). The needed POOL
system clearly suffers of that. It would be more simple to
have, behind POOL, a dedicated IO package (at the ROOT
format ?) and use the LCGDict only (then avoiding the
full burden of a C++ interpreter here). There are also the
presence of two plugin managers that are incompatibles
(Seal/PluginManager, TPluginManager). We do not even
mention the problem of the various build systems. The au-
thor had to port all that on MacOSX (plus Gaudi and the
whole LHCb software on top of it) : this had been months
of astounding pain. All this is a sociological and engineer-
ing shame : the LHC does not deserve that.

What is CERN ?

For the author [7], CERN had been created, first of all, to
federate scientific and engineering forces of a set of coun-
tries to run (big) experiments to do physics. Part of accel-
erators and detectors, after agreements between members,

are build in home institutes or private companies and as-
sembled at CERN, where this place offers the infrastructure
and organization to assemble and operate all that. SOFT-
WARE is clearly an engineering deliverable and, what have
to be provided and maintained is clearly out of scope of one
man alone. Then software must follow the same paradigm
than machine and detectors. It means, in particular, that
this system can’t work by putting engineers and techni-
cians in pure concurrency from begin to end. At some point
a convergence on technologies must be done in order to
synchronize ALL PARTIES ; and this because the gifted
manpower is in fact spare and that everybody is needed.
How much men today have views on the internal of ROOT
and SEAL and Gaudi and POOL and Geant4 : it could be
counted with fingers of one hand. A set of fermionic de-
velopers must become at some moment a bosonic group.
”LCG uses ROOT” (another way to say ”take it and shut
up”) shows that some people, part of the program, are out
of engineering control. By violating the idea of federation,
it signs the death of CERN as an engineering federating
place for doing scientific software. By giving engineering
immunity to some, it opens, once more, the way to another
era of poor engineering and overall mediocrity concerning
software questions.

CONCLUSIONS

OpenScientist integration works and is sufficently used
to continue. The opposition with ROOT is huge because
the strategies adopted are at two extremes ; the ”make all at
home” for one and ”integrate dedicated open source code
done elsewhere” for the other. The author is deeply con-
vinced that the second option is more adapted to the to-
day world and definitely more adapted for a lab like CERN
created to federate engineering forces of countries to run
experiments.

REFERENCES

[1] http://www.lal.in2p3.fr/OpenScientist.

[2] TROOT.cxx

[3] http://www.coin3d.org

[4] http://aida.freehep.org

[5] Linux Journal of July 1998 : ”ROOT an OO data analy-
sis framework. A data analysis tool developed and used by
CERN”

[6] But it seems so also for Robert Aymar : see ”point c” in
CERN Courier March 2004. ”CERN’s role on the European
stage”


