
DIRAC: Workload Management System

V. Garonne, A. Tsaregorodtsev
Centre de Physique des Particules de Marseille, Marseille, France

I. Stokes-Rees ∗,
University of Oxford, Oxford, UK

Abstract

The Workload Management System is the core compo-
nent of the DIRAC distributed MC production and analysis
grid environment of the CERN LHCb experiment. This pa-
per discusses the architecture, implementation and perfor-
mance of this system. The WMS is a community scheduler,
realizing a pull paradigm, particulary for the high troughput
computing context. It has recently been used for an inten-
sive physics simulation production involving more than 60
sites, 65 TB of data, and over 1000-GHz processor-years.

INTRODUCTION

LHCb is one of the four particle physics experiments
currently being developed for the Large Hadron Collider
(LHC) at CERN, the European Particle Physics Labora-
tory. Once operational, the LHCb detector will produce
data at a rate of 40 MB/s[8]. This data will then be distrib-
uted around the world more than 100 physicists at 40 sites
for analysis. Before this analysis of real physics data can
begin simulations are required to verify all aspects of the
detector design, algorithms, and theory.

The LHCb Data Challenge (DC04) held from May-
September 2004 had three goals: to confirm the LHCb
computing model; to verify LHCb physics software; and
to generate simulation data for analysis. The ultimate goal
of this exercice was to produce the equivalent of 10% of
the real data accumulated in one year, which represents 60
TB. To achieve this goal, LHCb had to make efficient use
of all available computing resources, which are a combi-
nation of LCG(LHC Computing Grid Project) and conven-
tional computing centres. In total, this represented more
than 10.000 CPUs, sometimes shared with other organiza-
tions, which had to execute more than 250K jobs. Allo-
cation of this number of jobs to the resources needed an
efficient worlkload management system (WMS).

This paper will first describe the background of the
DIRAC WMS developement and its architecture. The fol-
lowing section presents the scheduling algorithm and the
match-making procedure. We will also discuss the recent
results obtained during DC04.

BACKGROUND

The DIRAC project was initially started as a system for
distributed MC production system for the LHCb experi-
ment. The WMS for a production must focus on high

∗ also Marie Curie Fellow at CPPM, Marseille, France

throughput, which implies maximization of the number of
jobs completed, on a daily, or longer, basis. This is typ-
ical of situations where the supply of computational jobs
greatly exceeds the available computing resources, and the
jobs are generally not time critical. This strongly favors a
pull model, where computing resources request jobs from
a large job pool. In contrast, a push model attempts to cen-
trally optimize the allocation of jobs to resources, and can
be overwhelmed by the scale of this problem. A pull model
only needs to find one job to match one resource, and only
when a resource makes a job request.

An efficient WMS should saturate all the resources avail-
able to LHCb independently of their nature. These re-
sources are often shared with other communities. There-
fore, a community scheduler approach dedicated to one vir-
tual organization is the most suitable in this setting.

The latest version of DIRAC [11] is organized into a
Service Oriented Architecture (SOA), with a number in-
dependent services, following the decomposition found in
the CERN/ARDA blueprint document [6]. An important
requirement for the WMS was its design and deployment
as a set of independent services, fitting well the DIRAC in-
frastructure. This implies service implementations which
are lightweight, scalable and flexible, matching the require-
ments and design of the overall DIRAC system.

WMS ARCHITECTURE

The WMS is divided in two distinct parts. First, the
Job Managenent Service (JMS) which is itself composed
of a set of central services and, second, a number of agents
which are deployed on the remote computing resources.

Job Management Service

The Workload Management Service consists of the fol-
lowing components, as illustrated in Figure 1:

Job Receiver accepts job submissions from clients, regis-
ters them to the Job Database and notifies one of the
Optimizers.

Job Database contains all the information about the job
parameters and the dynamic job state.

Optimizers sort jobs into queues and continuously reshuf-
fle them depending on queue states, job load, and re-
sources availability.

Job Receiver

Submission

Service

Job
Database

Optimiser Queue
Queue

Queue

Optimiser

Service

Matchmaker

Notification

Agent Agent Agent

Computing Resources

Job

Figure 1: Job Management Services

Matchmaker allocates jobs to resources by selecting from
the global job queues. Uses Condor Matchmaking to
find an appropriate job to a particular agent request.

Most of the work in the JMS is performed by the Op-
timizers. They prioritize jobs in queues using a range of
techniques, and utilizing information from job parameters,
resource status, file locations, and system state. As a result
of this, jobs can be assigned to a particular computing re-
source which meets the job requirements, such as replicas
of input data files.

Optimizers are designed to be customizable, and sim-
ply need to implement a standard interface for interacting
with the queues they manage. Multiple Optimizers can ex-
ist in the system at the same time, and can be dynamically
inserted, removed, started, and stopped at run-time. This
allows new algorithms or heuristics for job prioritization to
be rapidly added to the system.

Agent

Agents are light daemons running close to a computing
resource and forming the distributed part of the WMS. The
design consists of a set of pluggable Agent modules. The
modules are executed in sequence in a continuous loop and
can be easily added (even dynamicaly) enhancing the agent
functionality.

The most important of these Agent modules is the Job
Request module. It monitors the state of the local com-
puting resource and fetches jobs from the Matchmaker
Service when it detects that the resource is ready to take
the workload. Thus, it operates in a cycle-scavenging
mode at the cluster level, where it only requests and ex-
ecutes jobs when the local resources are under-utilised.
This idea comes from global computing models, such as
SETI@Home, BOINC, and distributed.net [9, 1, 4], which
perform cycle-scavenging on home PCs.

After the reception of a job from the Matchmaker, the
Agent checks that the necessary software environment is
available on the site and installs any missing software pack-
ages if necessary.

Upon job submission to the local batch system, it stores
job parameters in a local database. This allows it to com-
pare the status of the jobs as reported by the WMS and by
the local batch system. In many cases this check helps spot-
ting job failures which failed to communicate their status to
the Job Monitoring Service.

One of the Agent modules is acting as an Instant Mes-
saging Client. This allows users to communicate with the
Agent to get its status information as well as the status of
the local jobs [10].

Agent deployment

The Agent is easily deployable on a site requiring only
the Python interpreter and outbound Internet connection in
order to contact the DIRAC Services.

Two distinct ways of the Agent deployment were used.
In a static approach, the Agent is installed close to a com-
puting resource and interacts directly with it. Usually, it
is deployed on a site gateway and is completely under the
control of the local site administrators.

Another, dynamic, approach, is illustrated in the Figure
2. This way of the Agent deployment was used to integrate
the DIRAC WMS with the LCG provided resources.

Resource
Broker

RB

Resource
Broker

RB

Resource
Broker

RB

ResourceBroker

RB

Worker
Node

Worker
Node

Worker
Node

Local
Scheduler Queue

QueueQueue
Local

Worker
Node

Worker
Node

Worker
Node

Local
Scheduler Queue

QueueQueue
Local

Worker
Node

Worker
Node

Worker
Node

Local
Scheduler

Queue
Local

Information
Service IS

CE
Info

Job
Submission

U.I

 Monitoring
Service

Task info

 Agent
Submitter

Job Submission

Request

Encapsulated Agent

DIRAC LCG

Figure 2: WMS integration with LCG

A special process called Submitter is running on an LCG
User Interface node. It contacts the DIRAC Job Monitor-
ing service to find out if there are jobs in a waiting state.
If there are, it then submits the appropriate number of jobs
which encapsulate agents to the LCG Resource Broker. In
this way the scheduling system of LCG is just used for de-
ployment of DIRAC Agents on the Worker Nodes.

Once the job arrives to the Worker Node, it launches
the DIRAC Agent, as illustrated in Figure 3. It checks
the Worker Node capacity and environment and creates the
JDL resource description accordingly. In particular, the
max CPU time available on the WN is estimated with a
simple benchmark test in order to estimate the maximum
size LHCb job thaht can be computed given the queue time
limit. After that the Agent queries a job from the Match-
Maker and the rest of the job processing is performed as on
any other DIRAC site.

In fact, this approach is a kind of resource reservation
which allows DIRAC jobs to be run on any kind of com-
puting grid.

Worker Node

DIRAC
Agent

Job

MatchMaker
Service

Request Job
with the "virtual site"
resource description
language

Wrapped

Send JobProcess
creation

Figure 3: Agent on a Worker Node

COMPUTING ELEMENT

The Computing Element is the abstracted view of a com-
puting resource, providing a standard API for job execution
and monitoring. Using this, an Agent can easily deal with
heterogeneous computing resources. A Computing Ele-
ment is modeled as a Head Node which manages a cluster
of Worker Nodes. Such a system is assumed to have its
own local scheduler and local queues.

At present, DIRAC provides CE interfaces to LSF, PBS,
NQS, BQS, Sun Grid Engine, Condor, Globus, LCG, and
stand-alone systems(via fork). Each implementation deals
with translating the DIRAC job requirements to locally un-
derstood job submission command.

Criterion of availibility

To know if a resource is available we use a criterion of
availability, which depends on the nature of the resource
itself. For example, the following criterion of availability
can be defined for a batch system by queue:

Total Queueing Jobs

TotalCPUs
< ε (1)

For example we set ε = 0.3 by default. This criterion im-
plies that jobs in the waiting state scheduled on a comput-
ing resource should not exceed 30% of the total number of
CPUs. This simple criterion allows balancing the number
of running and queued jobs on a site over a wide range of
capacities.

Job Watchdog and Wrapper

For each job, a Wrapper script prepares the execution
environment, as illustrated in Figure 4, downloads the nec-
essary data and reports to the Job Monitoring Service the
Worker Node parameters. It then spawns a Watchdog
process. This process periodically checks the state of the
job and sends a heart-beat signal to the Monitoring Service
([12]) . In addition, it can provide a connection for inter-
action with the owner of the job by means of the Instant
Messaging protocol [10]. At the end of the job, the watch-
dog process reports the job execution information, for ex-
ample CPU time and memory consumed, to the Monitoring

Worker Node

Wrapped
Job

Job

Job
Controller/Service

: Data/information flow

: Process created
: Inter Process Communication

Job Management
System

Figure 4: Job Wrapper

Service. Finally, it catches failed jobs and reports them ap-
propriately.

PULL PARADIGM VS PUSH PARADIGM

There are three phases in a typical push grid scheduling
system:

1. Scheduler collects resource status for entire grid

2. Scheduler selects job allocation to resources

3. Scheduler submits jobs to resources

For phase one, all the information concerning the system
needs to be made available at one place at one time. In a
large, federated grid environment, this is often impractical,
and information will often be unavailable, incorrect, or out
of date. In the second phase, the choice of the best pairs of
jobs and resources is an NP-complete problem and the size
of this problem increases with the number of jobs and re-
sources. This approach is often centralized, as in EDG[2],
and does not scale well.

In contrast, the DIRAC pull strategy has the following
phases:

1. Agent detects free computing resources

2. Agent requests job from Matchmaker

3. Matchmaker checks queues for appropriate match

4. Matchmaker returns best matching job to Agent

The previously difficult task of determining where free
computing resources exist is now distributed to the local
Agents which have an up to date view of the local system
state. In phase 3, Condor Matchmaking is used. [7] The
Matchmaker only compares one-on-one requirements, us-
ing a round-robin on each of the job queues until it finds
a job which can run on that resource. This is an O(n) op-
eration, with the worst case being all n jobs queued in the
system are checked once against the resource characteris-
tics defined in the job request.

Typically it is found that job requirements do not vary
significantly within a system, so rather than compare a re-
quest against all n jobs, the jobs are sorted into queues
based on common requirements. The matching time is sig-
nificantly reduced. Both long matching time and the risk of

job starvation can be avoided through the use of an appro-
priate Optimizer to move “best fit”, “starving”, or “high-
priority” jobs to the front of the appropriate queue. This
frees the match operation from necessarily considering all
the jobs within the system. As reported elsewhere [5], this
allows a mixture of standard and custom scheduling algo-
rithms.

IMPLEMENTATION DETAILS

The current implementation has been written largely in
Python, due to the rich set of library modules available,
its object oriented nature, and the ability rapidly prototype
design ideas. All Client/Service and Agent/Service com-
munication is done via XML-RPC calls, which are light-
weight and fast. Furthermore, instantiating and exposing
the API of a Service as a multi-threaded XML-RPC server
in Python is extremely straight forward and robust. For
all Service and Job state persistence, a MySQL database is
used.

PERFORMANCE

At the time of writing the DIRAC([3]) system is man-
aging tasks running directly at 20 computing centers, and
at another 40 sites via the LCG network. These 60 sites
provide a total of more than 5000 worker nodes.

Figure 5 shows the match times for jobs during LHCb
DC04. 97% of the time this operation takes less than one
second even with tens of thousands of queued jobs, thou-
sands of running jobs, and dozens of Sites requesting jobs
concurrently.

More than 200,000 jobs have been completed in four
months with an average duration of 21 hours. In terms
of data, during DC04 the system has produced, stored and
transfered 60 terabytes of data. Each job produces 400
megabytes, which is immediately replicated to several sites
for redundancy and to facilitate later data analysis.

0.05s 0.25s 0.5s 0.75s 2s 7s 30s 207s
0

12122

mean: 0.42s

mode: 0.25s

total jobs: 59174

jo
bs

match time (s) (non−linear scale)

Figure 5: Match time distribution for 59,174 jobs during DC04

chapter

FUTURE DEVELOPMENT

While the pull model works well for parameter sweep
tasks, such as the physics simulations conducted during
DC04, it remains to be seen if individual analysis tasks,
which are more chaotic by nature, and require good re-
sponse time guarantees, will operate effectively. A new
class of Optimiser is planned which will allocate time-
critical jobs to high priority global queues in order that they
be run in a timely fashion.

CONCLUSION

The worlkload management system of DIRAC has
proven to be robust, scallable and easy to deploy. The pull
paradigm has meant large job queues and large numbers of
running jobs do not degrade system performance, and job
allocation to resources takes under a second per job.

ACKNOWLEDGEMENTS

We gratefully acknowledge the involvement of the
LHCb Collaboration Data Management Group, and the
managers of the LHCb production sites.

REFERENCES

[1] BOINC. http://boinc.berkeley.edu.
[2] G. Cancio, S. M. Fisher, T. Folkes, F. Giacomini,

W. Hoschek, D. Kelsey, and B. L. Tierney. The DataGrid
Architecture Version 2. In EDMS 439938. CERN, Feb 2004.

[3] J. Closier et al. Results of the LHCb experiment Data Chal-
lenge 2004. In Proceedings of Computing in High Energy
and Nuclear Physics (CHEP), November 2004.

[4] distributed.net. http://www.distributed.net.
[5] D. G. Feitelson and A. M. Weil. Utilization and Predictabil-

ity in Scheduling the IBM SP2 with Backfilling. In 12th
International Parallel Processing Symposium, pages 542–
546, 1998.

[6] LHC. Architectural Roadmap Towards Distributed Analysis
- Final Report. Technical report, CERN, November 2003.

[7] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mech-
anisms for High Throughput Computing, 1997.

[8] N. Neufeld. The LHCb Online System. Nuclear Physics
Proceedings Supplement, 120:105–108, 2003.

[9] SETI@Home. http://setiathome.ssl.berkeley.

edu/.
[10] Stokes-Rees, I. and Tsaregorodsev, A. and Garonne, V. Grid

Information and Monitoring System using XML-RPC and
Instant Messaging for DIRAC . In Proceedings of Comput-
ing in High Energy and Nuclear Physics (CHEP), Septem-
ber 2004.

[11] A. Tsaregorodsev et al. DIRAC - The Distributed MC Pro-
duction and Analysis for LHCb. In Proceedings of Comput-
ing in High Energy and Nuclear Physics (CHEP), Novem-
ber 2004.

[12] V. Garonne and R.Graciani-Diaz and J.Saborid and
M.Sanchez and R.Vizcaya-Carrillo. A Lightweight Moni-
toring and Accounting System for LHCb DC04 Production.
In Proceedings of Computing in High Energy and Nuclear
Physics (CHEP), November 2004.

