
POOL DEVELOPMENT STATUS AND PLANS

 I. Papadopoulos, R. Chytracek*, D. Düllmann, M. Frank, M. Girone*, G. Govi*, J.T. Moscicki*,
H. Schmücker (CERN, 1211 Geneva, Switzerland)

K. Karr#, D. Malon#, A. Vaniachine# (Argonne National Laboratory, IL 60439, USA)
T. Barrass (University of Bristol, BS8 1TL, UK)

W. Tanenbaum (Fermi National Accelerator Laboratory, Batavia, IL 60510, USA)
C. Cioffi (University of Oxford, Oxford, OX13NP, UK)

Z. Xie (Princeton University, NJ 08544, USA)

Abstract
The LCG POOL project [1] is now entering the third

year of active development. The basic functionality of the
project has been provided but some functional extensions
will move into the POOL system this year. This paper
summarizes the main functionality provided by POOL,
which is used in physics productions today. It also
presents the design and implementation of the main new
interfaces and components planned such as the POOL
RDBMS abstraction layer and the RDBMS based Storage
Manager back-end..

INTRODUCTION
POOL is one of the two parts of the LCG persistency

framework; the other one is the ConditionsDB project.
POOL provides technologically neutral object persistency
with navigational capabilities integrating object streaming
and relational database technologies. The high level
design and architecture of the POOL system is described
in [2].

POOL has been established as the baseline technology
for the software object storage in three LHC experiments
(ATLAS, CMS, LHCb) after its successful integration into
their software frameworks [3]. Its current functionality has
been largely validated by the experiments during this
year's data challenges [4].

The main development efforts of the POOL team are
currently focused towards the definition and
implementation of a technologically neutral mechanism
for accessing relational databases. One of the ultimate
aims of this new development line is the extension of the
object storage capabilities of POOL in order to be able to
use relational database technologies, complementing the
usage of the existing object streaming technology (ROOT
I/O) [5].

At the same time the POOL team is working in
collaboration with the ROOT developers to ensure a
smooth transition towards adopting ROOT version 4 in a
way that backwards compatibility will be ensured.

CURRENT STATUS
POOL has entered its third year of development. During

the first two years the project team was focused towards
following the proposed work plan. Our team has managed

to meet the rather aggressive time requirements for
producing the software deliverables at the quality level
which was required in order for POOL to be part of the
production software of the ATLAS, CMS and LHCb
experiments.

In order to support this year's data challenges which
have generated a volume of ~400TB the project team had
to shift focus from pure development to user support,
deployment and maintenance. To this end several
developers have placed their effort into experiment
software integration or back-end services. This strategic
decision, which was meant to insure proper coupling
between software and deployment, has affected the
available development manpower with the task profile
changing from design and debugging to user support and
re-engineering. There is still though the need to maintain
stable and focused manpower from CERN and the
experiments; both parties have confirmed their continuous
commitment to the project.

INCREMENTAL DEVELOPMENTS

Migration to ROOT version 4
This year the ROOT team released version 4 of their

software framework. Since the I/O part of it is used as the
main technology for object streaming in POOL, there has
been a need for POOL to migrate to this version, marking
the start of the POOL 2.0 development line.

Migrating to ROOT 4 is not only required on the basis
of the configuration issues that arise if one considers that
the clients of the LCG software may use ROOT also
through paths not involving the POOL software
components. ROOT 4 offers the advantages of automatic
schema evolution and simplified streaming of the standard
C++ library containers.

The main challenge in this effort is to ensure backwards
compatibility for POOL 1.x (ROOT 3.x) files. This issue
is being resolved through the close collaboration between
the POOL and ROOT teams, which try to agree on the file
format of the ROOT 4 files containing standard C++
library containers. At the same time there is an undergoing
validation process by the experiments of the POOL 2.0
pre-releases.

The POOL team will be releasing two branches, one
based on ROOT 3 and another one based on ROOT 4,
until POOL 2 is fully certified.

__ ____

*funded by Particle Physics and Astronomy Research Council, UK.
#work supported in part by the U.S. Department of Energy, Division of
High Energy Physics, under contract W31-109-Eng-38

File Catalog deployment
This year's data challenge productions have been

heavily based mainly on XML and grid catalog
implementations. For the latter several weaknesses have
been revealed over which POOL has little control. At the
same time several new or enhanced catalogs are being
developed. Moreover, changes in the computing models
of the experiments need to be taken into account.

POOL is trying to generalize from specific
implementations and to provide an open interface to
accommodate upcoming components. To this end the File
Catalog interfaces are being redesigned to achieve a clear
split between user- and developer-level interfaces,
between catalog management and functionality and
between meta-data handling and file name registration and
lookup.

The new interface design will ease the development of
adaptors matching the POOL catalog interfaces and the
API of the underlying grid services. A testing suite based
purely on the POOL File Catalog interfaces will be used
by developers of new implementations to validate and
benchmark their components.

Collection Catalogs
There are currently several implementations of the

POOL Collection interfaces. These are either implicit,
implemented directly at the Storage Manager level, or
explicit implemented using ROOT trees or MySQL tables.
In response to experiment requests, cataloguing of explicit
collections has been recently provided. Collection
catalogs are similar to file catalogs, where the entries are
named collections instead of files. For the first
implementation of the collection catalogs we have reused
the existing file catalog implementations and command-
line tools.

Further development in the area of the Collections
needs concrete input from the analysis models of the
experiments. We are expecting that the experience gained
from the analysis parts of this year's data challenges will
provide us with the desired feedback.

A RELATIONAL BACK-END FOR POOL

Motivation and goals
The first discussions on a relational back-end for POOL

started towards the fall of 2003 between the POOL team
and the LHC experiments. There were two main physics
use cases that had to be addressed. The first one is related
to the ConditionsDB project [6]. It had already become
evident to everybody that the data payload for the
conditions objects should be handled by POOL, which
already provides a general object storage mechanism,
while keeping the intervals of validity in a relational
database. In order to avoid having to manage two types of
storage media when storing conditions objects, POOL had
to provide a Storage Manager implementation based on
the same relational database technology that is used for
storing the intervals of validity.

The second use case arises from the fact that there
configuration and detector control data that are written on-

line directly to relational databases using native APIs or
vendor-specific tools. Off-line reconstruction and analysis
frameworks often require such data to be read in as
software objects, which can be referenced by other
reconstruction or analysis objects. An example would be a
reconstructed event header pointing to objects holding
information such as the beam luminosity or the detector
layout corresponding to the time that the actual physics
event took place. A relational back-end for the POOL
Storage Manager would have to handle existing relational
data which have to be presented as user-defined software
objects.

Domain decomposition
During the first months of 2004, the use cases for the

relational back-end have been formalized in a
requirements document authored by members of the
POOL team and representatives of the LHC experiments.
The analysis of the requirements lead to the domain
decomposition which is shown in Fig.1.

The POOL relational back-end comprises three main
domains.

 The Relational Abstraction Layer (RAL), which is
defines a technologically neutral API for accessing
and manipulating data and schemas in relational
databases.

 The Object-Relational mapping mechanism, which
is responsible for transforming C++ object
definitions to relational structures and vice-versa.

 The Relational Storage Service, which is an
adapter implementing the POOL Storage Service
interfaces in terms of the RAL and using the
Object-Relational mapping mechanism.

Figure 1: The components comprising the POOL
relational back-end and their relation to the rest of the

software system.

The Relational Abstraction Layer
The RAL has been identified as the base domain for the

whole relational back-end for several reasons. It is
required in order to achieve vendor independence for the
relational components of POOL (File Catalog, and
Collections), the ConditionsDB and potentially user code
of applications accessing relational data. Moreover, its
introduction may address the problem of distributing data
in RDBMS of different flavours.

The RAL abstract interfaces are defined in the
RelationalAccess package. Their technology-specific
realizations are implemented following the SEAL
component model [7] as plug-in libraries. This
architecture reduces the code maintenance effort for the
relational components and allows for a better traceability
of bugs. Moreover it minimizes the risk of binding to a
particular RDBMS vendor. On the contrary, it allows the
usage of multiple technologies in parallel. Applications
which access relational databases through the RAL
become automatically testing grounds for plug-ins of new
RDBMS flavours.

The RAL interfaces allows a user to:
 describe or manipulate an existing schema, i.e.

create and describe tables and indices, define and
retrieve primary keys, unique, null and foreign key
constraints;

 perform data manipulation, i.e. insert, delete and
update rows in a table;

 perform queries involving one or more tables,
supporting nested queries, limiting and ordering of
the result set, client cache control and scrollable
database cursors.

The handling and the description of the relational data
is done using a simple key-value pair interface of the
already existing POOL AttributeList package. The RAL
API is a clean C++ interface with no SQL types involved.
The only SQL fragments a user would ever have to
provide is the WHERE and SET clauses in the data
manipulation operations and the queries. The C++ to/from
SQL type conversion is done implicitly through a type
converter. Each technolgy implementation provides a
default type mapping which is user customizable so that
one could take advantage of vendor-specific SQL type
extensions.

The encapsulation of the SQL types and syntax behind
the C++ interfaces solves the problems which arise from
the non-compliance of the various vendors to a common
standard for some SQL operations such as table creation.
It therefore shields the clients from the technology-
specific software not only by eliminating compile-time
dependencies but also semantically.

The choice of the specific plug-in which has to be
loaded during run time is deduced from the technology
field of the connection string which is provided by the
user. This string should have the following format in order
to be recognizable by the system:
technology[_protocol]://database[:port]/databaseSchema

No authentication parameters such as user name or
password appear in such a string. The reason for this is
that the connection string should be used to describe only

the physical location of the data. Such strings are expected
to be shared among different users or even stored as
“physical file names” in the POOL file catalogs. The
inclusion of the authentication parameters is therefore not
appropriate.

A user authenticates oneself with the database either
explicitly providing a user name and a password through
the RAL API, or implicitly using an Authentication
Service. Such a service provides the system with the
necessary authentication parameters given a connection
string. POOL has provided two implementations of the
IAuthenticationService interface. One which reads the
parameter values from two environment variables and
another one which reads them from an XML file, where
multiple connection strings and their corresponding
authentication parameters are specified.

The RAL was first released with the POOL software in
version 1.7. In this version two technology-specific plug-
ins were provided as well: one for accessing Oracle
databases and one for accessing SQLite files.

The Oracle [8] plug-in has been implemented using the
Oracle Call Interface (OCI) client software. This choice
was made mainly for two reasons. The first one was that
we would like to profit from the performance advantages
that this solution offers. The second is that being a C
library we expect to be encountering less configuration
problems whenever POOL is released with a new C++
compiler.

Since the first pre-releases of POOL 1.8 the Oracle
plug-in is built against the Oracle Instant Client. It has
been tested against 9i and 10g database servers. The
software automatically detects the version of the database
and in case of a 10g server it makes use of the recently
introduced BINARY_FLOAT and BINARY_DOUBLE
types which are stored as standard IEEE floating point
numbers in the database.

SQLite [9] is a small C library that implements a self-
contained, embeddable, zero-configuration SQL database
engine. It is file-based and therefore the consistency of
concurrent accesses is guaranteed by the underlying file
system.

As of the pre-releases of POOL 1.8 there is available a
plug-in which serves accesses to MySQL [10] databases.
This library has been implemented using the ODBC API.
This means that the MyODBC driver is loaded during run
time. The choice to use the ODBC API instead of the C
native one was done for three reasons. The first one is to
ensure smooth transition from the MySQL version 4.0 to
version 4.1 and later to 5.0, where the native C API as
well as the underlying semantics change considerably.
The second reason is that the MyODBC driver exposes a
more complete functionality, which had allowed almost
the full implementation of the RAL interfaces. Finally, the
third reason is that this plug-in can be eventually used to
serve other RDBMS technologies for which a free ODBC
driver exists.

The RAL has already been used within POOL to
implement a Relational File Catalog. Some experiments
have already integrated it in their frameworks and there
are already experiment-specific applications accessing
Oracle databases through the RAL of POOL.

Object storage using the RDBMS back-end
The second domain in the POOL relational back-end

addresses the issues which emerge when a C++ class has
to be mapped to a relational structure and vice-versa.

In the relational world tables play a similar role to that
of the classes in the object world: they define how data are
laid out in memory. Rows in a table can be thought of as
the equivalent of objects of a class because they hold data
of a well defined layout.

The first fundamental difference between objects and
rows is that the former exhibit identity by construction
while the latter by default not. Identity is necessary to
uniquely and unambiguously address an object in a
program in order to access its data. It is also the basis of
every association between objects. To solve the problem
of missing identity it is required that rows which are to be
represented as objects should be in tables which define a
primary key or a unique index.

The second difference between objects and rows has to
do with the associations that may be established between
two or more data sets. In the object world there are
aggregations (associations realized as persistent
references) and compositions. In the relational world the
corresponding constructs are foreign key constraints.
Object associations have a well defined directionality and
multiplicity. On the other hand a table schema alone
cannot determine unambiguously the directionality and
the multiplicity implied by a foreign key constraint. It is
up to the mapping process to resolve these ambiguities.

To illustrate how the mapping works let us assume that
a user would like to store objects of the following C++
class:

One of the possible mappings to a relational schema for
this class is presented in Fig.2. The schema contains one
table (T_A) for the top-level class A, and another one
(T_A_M_B) to accommodate the values of the data
member vector m_b. The primary key (ID) in T_A serves
the role of the object identity. In the table T_A_M_B a
foreign key constraint is defined. There is also a special
column to hold the position of the elements inside the
vector.

The ObjectRelationalAccess package of POOL
provides the necessary software for generating mappings
given a class. It allows a user to prepare the relational
schema by creating or altering the relevant tables. While
there are default rules for the mapping generation, a user
could override them. This would be the case if one would
like to generate object-relational mappings for existing
data. POOL provides a tool which uses an XML file to
steer the mapping generation, where the non-default rules
are specified. The generated mapping is a hierarchical
structure of elements describing the C++ types and names

of the data members as well as the names of the associated
columns and tables. The mapping hierarchy is versioned
and can be stored in the database in three hidden tables.

Figure 2: The relational schema corresponding to a
mapped class.

Object storage and retrieval is performed with the
guidance of the SEAL reflection information for the C++
class in question and the corresponding mapping element
for this class. The version of the mapping ensures that
simple schema evolution cases are handled automatically.

A POOL container of objects simply keeps the values
of the primary key values and the mapping versions
corresponding to an object whose data members are
written to the relational tables. The POOL
RelationalStorageService component, which will be
released this year, will ensure that the full object I/O can
be performed through the POOL framework in an
identical -to the user- way with the existing object
streaming to ROOT files.

ACKNOWLEDGEMENTS
The POOL team would like to thank the people working

on the integration of POOL into the software frameworks
of the LHC experiments for being the beta-testers of the
various POOL components, contributing significantly to
the quality of the our deliverables.

REFERENCES
[1] The POOL project http://pool.cern.ch/.
[2] D. Düllmann, “The LCG POOL Project – General

Overview and Project Structure”, CHEP 2003
Proceedings, MOKT007.

[3] Giacomo Govi et al. “POOL integration into three
experiment software frameworks”, these proceedings.

[4] Maria Girone et al. “Experience with POOL in the
LCG data challenges of three LHC experiments”,
these proceedings.

[5] The ROOT project http://root.cern.ch/.
[6] Andrea Valassi et al. “LCG Conditions Database

project overview”, these proceedings.
[7] Radovan Chytracek et al. “The SEAL Component

Model”, these proceedings.
[8] Oracle http://www.oracle.com/.
[9] SQLite http://www.sqlite.org/.

class A {
 int m_i; float m_x; std::vector m_b;
};

with
class B{
 float m_x; double m_y;
};

