
SFH, CHEP04, Sept 30, 2004 Page 1

Self-Filling Histograms: A toolkit for
object-oriented histogram filling

Jenny List, University of Wuppertal
& Benno List, ETH Zurich

CHEP '04
 Interlaken, Sept. 30 2004

● Introduction: What is an SFH?
● Design Specs: Why have we developed it?
● Simple Examples: How does it work?
● Basic Abstractions: The main ideas inside SFH
● An advanced Example
● Conclusions & Outlook

SFH, CHEP04, Sept 30, 2004 Page 2

Introduction: What is an SFH?
● Self-filling means that the histogram object „knows“

– with which quantity it should be filled
– with which weight
– and under which conditions

● This implies that
– the Fill() method doesn't need any arguments
– the call to Fill() doesn't need to be within nested “if” statements

=> the histogram filling can be done automatically!
● Self-filling Sets/Matrices of Histograms allow easy handling

of large amounts of similar histograms
(-> differential x-sections, data / MC comparisons)

SFH, CHEP04, Sept 30, 2004 Page 3

Design Specifications I

● Put data & functionality which belongs together inside the
same object:
– a histogram get's completely defined at booking time
– the user doesn't have to pay attention to fill the right

quantity into the right histogram in event loop...
=> easier to maintain consistency

● Declarative instead of procedural programming:
– no need for many nested loops or if statements
– several small classes instead of a few big ones make code

more understandable & maintainable

SFH, CHEP04, Sept 30, 2004 Page 4

Design Specifications II

● Detect programming errors early
– compiled code instead of macro
– use strong typing ability of C++
– avoid string parsing at run time

● Efficient handling of large number of histograms
– treat similar histograms as one object

(ex: same quantity for data & MC samples)
● Minimal performance penalty

– loop over events only once
(≠filling several histos with TTree::Draw())

– supply caching for complicated functions

SFH, CHEP04, Sept 30, 2004 Page 5

Usage Examples

Before looking at the design:

 let's see how it can be used!

All examples assume you to have:

– a class MyTree representing your tree
(handwritten or generated by TTree::MakeClass())

– a class AnalysisLoop
derived from the SFH class EventLoop:
class AnalysisLoop : public EventLoop

SFH, CHEP04, Sept 30, 2004 Page 6

Histogram a variable from a RooT tree
Constructor of AnalysisLoop:
AnalysisLoop (MyTree& tree) {
 FloatFun& METFun = ntfloatfun (tree, &MyTree::MET);
 METHist = new SFH1F("methist","Missing Transverse Energy",
 50, 0., 200.,
 this, // histo registers itself for filling
 METFun); // histo now knows what to fill!
 }

METHist is filled automatically during event loop of the base class
 - afterwards you maybe want to plot & store it:

output (TFile *psfile, TFile *rootfile) {
 TCanvas *c1 = new TCanvas("c1", "MET", 600, 800);
 TPostScript ps (psfile, 111);
 METHist->Draw();

 TFile file (rootfile, "RECREATE");
 this->Write(); // writes all histos of AnalysisLoop
 file.Write();
 }

SFH, CHEP04, Sept 30, 2004 Page 7

Add a cut & a weight to your events

IntFun& NBJetFun = ntintfun (tree, &MyTree::NBJet);
METHist = new SFH1F("methist","Missing Transverse Energy", 50, 0., 200.,
 this, METFun, NBJetFun == 1);

Use only events with exactly one b-tagged jet:

Now weight events according to pt of the b-jet:
// ptBJetWeight is a user class derived from FloatFun
FloatFun& ptBJetWFun = *new ptBJetWeight (tree,);
METHist = new SFH1F("methist","Missing Transverse Energy", 50, 0., 200.,
 this, METFun, NBJetFun == 1, ptBJetWFun);

Plotting the pt of all jets: just need an iterator!

FloatFun& ptJetFun = cached (cachedObjects,
 ntfloatfun(tree, &MyTree::ptJets, jetiter));

Caching the value of a function:

FillIterator& jetiter = ntfilliterator (tree, &MyTree::NJet);
FloatFun& ptJetFun = ntfloatfun (tree, &MyTree::ptJets, jetiter);
ptJetHist = new SFH1F("ptjethist","Pt of jets", 50, 0., 200., this, ptJetFun);

SFH, CHEP04, Sept 30, 2004 Page 8

The ideas inside....

After a first impression what SFH is:

 ... how does it work internally?

● registered objects
● self-filling objects
● function objects
● cached objects
● groups of registered objects
● visitors

.... and finally a more advanced example!

SFH, CHEP04, Sept 30, 2004 Page 9

Basic Abstractions 1: Self-Fillingness
– Registered objects (class RegO):

● registers itself in the ROList given in contructor
● an ROList can notify its elements (for filling...)
● the EventLoop base class is an ROList

– Self-filling objects (class SFO):
● “interface“ for argumentless filling:
virtual SFO::Fill() const = 0;

● implementation of Fill() using pointers to
function objects & iterators in derived classes:
void SFH1F::Fill() {
 for (iter->reset(); iter->isValid(); iter->next()) {
 if ((*cut)())
 this->TH1F::Fill ((*xfun)(), (*wfun)());
 }
}

RegO

RegH1F

SFH1F

TH1F

SFO

same for:
 TH2F, TProf, ...

SFH, CHEP04, Sept 30, 2004 Page 10

Basic Abstractions 2: Function Objects

Function objects implement operator()() const
● FloatFun: typically used as fill or weight value
● BaseCut: “BoolFun“ - used for cutting
● IntFun: returns an integer - special cases:

– FillIterator: additionally next(), reset()
-> access to multiple entries per event

– BinningFun: returns the number of the bin of a given
 Binning into which a value belongs

● function objects can be combined with + - * / && || sqrt ...
● there are global functions for some standard cases:

– create function objects from tree variable -> ntfloatfun(...), ntfilliterator(...)
– cache result of function until next event is read -> cached(...)

=> Cached object: base class CachedO, derived from RegO

IntFun

Binning

BinningFun

FillIterator

SFH, CHEP04, Sept 30, 2004 Page 11

Basic Abstractions 3: Groups of Histos
– Histograms can be grouped...

● a list of registered objects ROList: any RegO
● SetOfHistograms: a histogram + 1 BinningFun

=> the set creates & manages histograms for each bin
● MatrixOfHistograms: a 2D SetOfHistograms

=> 2 BinningFuns
● Sets/Matrices can

– be made self-filling
– be added, multiplied,
– create summary histograms of themselves

– ... & treated together => “visitor pattern“
● many visitors predefined for drawing,

attribute setting, fitting,..
● easy to derive your own visitor from HVisitor

RegO

SetOfHistograms

SFSetOfHistograms

ROList

SFO

SFH, CHEP04, Sept 30, 2004 Page 12

A more advanced Example

● The next two pages will show you how to
– implement a jet parton association à la SFH
– plot the energy difference between jet and parton
– plot this energy difference

differentially in bins of the parton energy
● Using

– IntFun, FloatFun, FillIterator

– caching
– SFH1F, BinningFun & SetOfHistograms

● A real example from an ATLAS analysis
done by a PhD student in Wuppertal....

SFH, CHEP04, Sept 30, 2004 Page 13

 Jet parton association in η-φ-space
class JetPartonFun : public IntFun {
 public:
 JetPartonFun (MyTree* tree, FillIterator *jetIter, FillIterator *partIter_)
 : partIter(partIter_) {
 jphi = ntfloatfun (tree, &MyTree::JetPhi, jetIter);
 jeta = ntfloatfun (tree, &MyTree::JetEta, jetIter);
 pphi = ntfloatfun (tree, &MyTree::PartonPhi, partIter);
 peta = ntfloatfun (tree, &MyTree::PartonEta, partIter);
 }
 virtual int operator()() {
 int result = -1; float mindist = 9999.;
 // loop over partons
 for (partIter->reset(); partIter->isValid(); partIter->next()) {

 float dist = calcdist((*jphi)(), (*jeta)(),(*pphi)(), (*peta)());
 if (dist < mindist) {

 mindist = dist;
 result = (*partIter)(); } } // index of parton with min. dist.

 return result;
 }
 protected:
 FillIterator *partIter;
 FloatFun *jphi, *jeta, *pphi, *peta;
};

SFH, CHEP04, Sept 30, 2004 Page 14

Using the Jet Parton Association
Define iterators:

FillIterator& jetIter = ntfilliterator (tree, &MyTree::NJets);
FillIterator& partIter = ntfilliterator (tree, &MyTree::NPartons);

IntFun& jpasso = cached (cachedObjects,
 *new JetPartonFun (tree, jetIter, partIter));

 ... and plot the energy difference between jet and parton:

Make a jet parton association and cache it:

FloatFun& partEFun = ntfloatfun (tree, &MyTree::PartonEnergy, jpasso);

FloatFun& jetEFun = ntfloatfun (tree, &MyTree::JetEnergy, jetIter);
deltaEHist = new SFH1F("deltaE","rel. energy diff.", 50, -10., 10.,
 (jetEFun-partEFun)/partEFun, jpasso >=0);

 Now you can use it - instead of an iterator:

With a SFSetOfHistograms it's trivial to do it in bins of Eparton:
BinningFun& ePartBinning = *new FloatFunBinnning (partEFun, 10, 0., 100.);
deltaEHistos = new SFSetOfHistograms ("deltaE","rel. energy diff.", 50,-10.,10.,
 (jetEFun-partEFun)/partEFun, jpasso >=0, 0, 0,
 ePartBinning);

SFH, CHEP04, Sept 30, 2004 Page 15

Summary & Outlook
● the SFH toolkit encourages object-oriented analysis of RooT trees

● self-filling histograms “know“ what they have to fill into themselves

● small function objects encapsulate the algorithms

● facilitates a declarative programming style

● large numbers of histograms can be handled easily
via sets of histograms

● used within H1, ATLAS, D0
● further reading:

https://www.desy.de/~blist/sfh/doc/html/index.html

● contact: Benno.List@desy.de, Jenny.Boehme@desy.de

