
COMPOSITE FRAMEWORK FOR CMS APPLICATIONS

V. Innocente, CERN, Geneva, Switzerland,
G. Eulisse, S. Muzaffar, I. Osborne, L. Taylor, L.A. Tuura,

Northeastern University, Boston, USA

Abstract

We present a composite 1 framework 2 which exploits
the advantages of the CMS data model and uses a novel ap-
proach for building CMS simulation, reconstruction, test-
beam visualisation and future analysis applications. The
framework exploits LCG SEAL [1] and CMS COBRA [2]
plug-ins and extends the COBRA framework to pass com-
munications between the GUI and event threads, using
SEAL callbacks to navigate through the metadata and event
data interactively in a distributed environment.

We give examples of current applications based on the
framework, including CMS test-beams, geometry descrip-
tion debugging, Geant4 [3] simulation, event reconstruc-
tion, and the verification of reconstruction and higher level
trigger algorithms.

INTRODUCTION

CMS users wishing to contribute to physics analysis face
a steep learning curve due to the complexity and the am-
mount of the software written in CMS as well as the num-
ber of external packages they need to incororate. The com-
munity has long discussed the idea of creating a coherent
graphical user environment where a user would have the
same interface to all CMS applications whether it is on-
line or off-line, simulation or reconstruction, DAQ or test-
beams.

The first step toward such an environment has been done
by creating a new IGUANACMS [4] project based on the
CMS build sysyem, SCRAM [5]. IGUANACMS by def-
inition depends on all other CMS projects. Thus a user
working within a developer’s area of this project enjoys a
consistent cross-project run-time environment. The distri-
bution of IGUANACMS includes consistent set of versions
of both the CMS and external software.

From the user point of view IGUANACMS is seen as a
composite framework providing coherent interface to the
majority of the CMS applications and frameworks neither
of which predominates over the other. Later in this paper
IGUANACMS is referred to as a visualisation framework.

One of the challenges in implementing a coherent envi-
ronment is the integration of the frameworks which are not
a priori designed to collaborate. We give successful exam-
ples of such integration and describe various ammount of
effort required to accomplish the task.

1composite [adj] - consisting of separate interconnected parts;
2framework [n] - a set of classes that embodies an abstract design for

solutions to a number of related problems, Computer Dictionary.

POOL DataCOBRA

Mantis

IG
UA

NA
CM

S ORCA

OSCAR

Geant4

Data 
Cards

DDD 
Geometry

Description
DDD

VisCobra

VisMantis

VisOscar

VisOrca

VisGeant4

IG
UA

NA

Coherent 

user view

Non-intrusive, 
loosely-connected 
frameworks

Integration
Run-time 
environment

Distribution

Uniform 
transparent 
data access

Figure 1: Uniform user view of the CMS visualisation ap-
plications for ORCA, OSCAR, COBRA, Geant4, Mantis,
DDD, and test-beams.

VISUALISATION FRAMEWORK
The presentation layer of the visualisation framework

(see Fig. 1) - the layer which user sees and works with - is
based on IGUANA object model [6]. This layer is known
to the user as iguana. IGUANA is a SCRAM-based project,
it is a generic visualisation framework that provides a com-
mand “iguana” and a default driver “IGUANA”. The archi-
tecture and design of IGUANA is described elsewhere. [6].

The default mode of running iguana is a GUI (graphical
user interface) application. GUIs are generally recognized
as being very good for visual tasks, especially document
editing and some common kinds of file management, and
helping the user perform uncommon or unfamiliar tasks.
Alternatively the user may run iguana and its drivers via
a command line interface or in a batch mode. Nothing
prevents such an implementation since the GUI dependent
layer is well separated from the rest of the framework.

On startup iguana presents a list of available at run-time
session types to the user. Such session types are SEAL
plug-ins that correspond to a shared library. These plug-ins
are described in detail elsewhere [6]. The user selects one
of the session types with a predefined configuration for the
iguana studio, the graphical user environment. Depend-
ing on the configuration iguana studio loads the relevant
plug-ins and becomes one of the CMS visualisation appli-
cations for CMS reconstruction - ORCA [7] (CMS recon-
struction project), simulation - OSCAR [8] (CMS simula-



tion project), or iguana examples.
To provide additional configurability of the predefined

session type the user can pass data cards defined in a con-
figuration file as a command option. These cards can also
define the session type and futher configuration of the de-
sired application and algorithms; e.g. the list of the plug-ins
to load at the startup and the input or output data he or she
wants to work with.

EXTENDING COBRA FRAMEWORK
Visualisation applications do not need to know anything

about the persistency of the data to be visualised. Indeed,
the user may not even be aware of what is going on behind
his request to visualise a certain physics quantity. For ex-
ample, if the object is persistent, i.e. it has already been
reconstructed and stored for future use, the request to CO-
BRA will be converted to a read of this object from the data
store, after which it is passed to the visualisation frame-
work to be represented according to the user’s request.

A more complicated scenario ensues when the user
works with simulated data. In this case such a request will
trigger a chain of actions: first digitization of the hits and
then reconstruction. The transient result will be passed to
the visualisation framework. Thus, as far as the user is con-
cerned, the visualisation process is the same as the simple
read request.

It is the responsibility of the visualisation framework to
create a model from the object, put the model in a con-
text, and assign one or more representations of said model
in each of the contexts. More detailed description of the
IGUANA object model architecture can be found at the
IGUANA web site: http://iguana.cern.ch.

Active Configurables
The visual representation of the objects can be cus-

tomized at run-time either by changing the model, by set-
ting a different parameter for a reconstruction filter and
then re-running the reconstruction, or by changing the rep-
resentation itself, e.g. visualise only those reconstructed
objects fitting certain criteria.

Active configurables are implemented based on the Ob-
server pattern to set and change the data cards at run-time.
The observed configurable does not know anything about
the observers. Instead it ”publishes” such changes, thus
notifying the observers.

A GUI-based service to create new configurables or
modify existing ones can be dynamically loaded at run-
time for any COBRA-based application. This service
presents the snapshot of all configurables at any given time.

Visualisation Context and Threads
To keep the GUI active most of the time, it runs in a

separate thread. COBRA also exploits multiple threads to
permit optimal use of resources. The communication layer
keeps consistency between the visualisation model in the

GUI thread and the COBRA objects in the event and other
threads. The visualisation framework creates a context for
each thread and defines mechanisms for updating the con-
text. Once again, SEAL callbacks are used to maintain
communication among the threads.

The visualisation framework processes the user actions
and commands, such as a request for a new event or to
visualise a physics quantity, and generates the appropriate
callbacks, or threaded command objects, which are queued
for further processing by COBRA.

As the threaded command objects are processed, the
requested (reconstructed) objects or event proxy are dis-
patched and asynchronously visualised if thus requested.
To keep the application thread-safe, the model functions
are not called while the threaded command object is run-
ning.

Thread safety issues arise when trying to integrate non
thread safe libraries and frameworks. OpenInventor is such
an example. Any updates of the OpenInventor scene graph
are therefore done within a lock.

MetaData Viewers

Information about the event and its structure is available
either as a tree, with a hierarchy of the containers and col-
lections, or graphically on a canvas. This information is
dynamic and is automatically updated when the structure
changes: from event to event or when new transient objects
are created. Once more, Observer patterns proved to be
very useful in the implementation.

Figure 2: CMS detector and simulated event.

Observers and Other Patterns

The visualisation framework is based on a variation of
the Model - View - Controller pattern; a layered MVC - a



triad modules linked by the Observer pattern. The MVC
pattern decouples changes to how data are manipulated
from how they are displayed or stored, while unifying the
code in each component.

The Observer pattern is useful mostly for dynamic rela-
tionships between objects: one can hook up a new observer
to an observable while the program is running (e.g. hook
up a newly-opened viewing window to a domain object),
and unhook it later (remove the window from the list of
observers when the user closes it).

In the pull model, the observable broadcasts that it has
changed, but does not indicate how it changed.

In the push model, the observable broadcasts a piece of
information that reveals the nature of the change, e.g. ’a
colour has changed to red’ or ’added item at index 12’.

In general the use of patterns helps to simplify the de-
velopment and understanding of the overall architecture.
There are some limitations however, e.g. in using excep-
tions and Observers. The Observer should never throw ex-
ceptions. There is no one to catch them.

COMMUNICATION WITH GEANT4
FRAMEWORK

Geant4 visualisation system assumes a rendering
pipeline view of graphics thus putting constrains on any
other orthogonal to it interactive usage, i.e. incremental
rendering.

The CMS visualisation framework needs to allow users
to choose which parts of the detector and event are to be vi-
sualised, and with what parameters; each change of settings
ought to allow for immediate change of the representation.
With the current support in Geant4 it is not easy to process
or re-process only a particular volume without disturbing
the rest of the existing scene graph.

The information provided by the Geant4 framework
about the volume processing is insufficient to allow the
scene handler to map the representations it is creating to
the original volume tree. Although it does provide infor-
mation, the manner in which it is provided does not allow
construction of the scene graph tree. As a consequence,
picking is not possible. It also makes it difficult to reuse
the representations like Geant4 does with logical volumes.
This same issue applies also to the event content: hits and
trajectories.

As a result, Geant4 integration into the CMS interac-
tive graphical environment required to partially re-write
the Geant4 visualisation framework: the visualisation man-
ager, the Geant4 command line shell to synchronize the
GUI and Geant4 threads. The latter runs the command line
among other things. Consequently it also synchronizes the
exit so that exit from either of the threads triggers the other
to quit.

APPLICATION EXAMPLES

Currently several visualisation applications are available
at iguana startup. They are divided into two major cat-
egories: visualisation for simulation and visualisation for
reconstruction. As is desirable from a user’s point of view,
these two groups of CMS graphics applications are becom-
ing more and more similar. Our goal is to eventually re-
move the remaining differences.

Visualisation for Reconstruction

Visualisation for the reconstruction project ORCA in-
cludes several applications: rec application, sim applica-
tion and daq application. The type of the application can be
set as a data card in a configuration file. Alternatively, one
of the applications can be loaded from the GUI at startup.
This feature is implemented as an application factory.

Visualisation for reconstruction can use either simulated
data as an input collection or digitized data.

DST Visualisation

The visualisation application for the DSTs (Data Sum-
mary Tape) is similar to the reconstruction visualisation ap-
plication with the difference that the input data collection
contains only reconstructed objects which are in fact the
DSTs (see Fig. 3).

Visualisation for Simulation

There are several types of applications for simulation:
persistent ones that write an output of each event in a
POOL [9] file and transient ones that do not. Genera-
tor types, physics tables, magnetic field, geometry source,
etc. are configured at startup. CMS detector geometry de-
scribed in XML comes from DDD [10] - detector descrip-
tion database. This geometry is converted to the Geant4
geometry and then visualised.

XML Geometry Visualisation

The geometry visualisation application is similar to the
simulation application. Any DDD XML geometry descrip-
tion can be read and visualised. Two data cards define the
name and the source of the geometry. Definition of the sen-
sitive volumes is CMS specific and is needed in order to use
the sensitivity filters.

Test-beam Applications

Applicability of the framework for the test-beams
strongly depends on the modularity of ORCA packages.
Since the test-beam setups normally have only a sub-set
of the sub-detector geometry it is mandatory that corre-
sponding packages from ORCA have clean dependencies,
i.e. would not require linking against other sub-detector
libraries.



Figure 3: The IGUANACMS DST application with a hierarchical view of the event containers, reconstructed objects and
detailed information about reconstruction algorithms.

Successful examples of the test-beam visualisation ap-
plications based on IGUANACMS are the muon drift tube
test-beam, HCAL test bed, the tracker test-beams.

DAQ Applications

DAQ applications define their input data by adding extra
packages in the configuration file. The rest is the same as
for the test-beam applicatons.

CONCLUSIONS

The CMS visualisation framework is rapidly extending
and the number of the specialized plug-ins is growing. As
a result this solution becomes viable for different CMS vi-
sualisation needs. The variety of applications based upon
the framework shows its inherent flexibility.

The limitations of the framework applicability are de-
fined mostly by the lack of modularity of the external soft-
ware, these issues have been identified and are being ad-
dressed by the corresponding projects.

ACKNOWLEDGEMENTS

This work is supported by NSF.

REFERENCES
[1] P. Mato, et al., “SEAL: Common core libraries and services

for LHC applications”, Proceedings of CHEP’03, La Jolla,
USA, March 2003.

[2] V. Innocente, et al., “CMS Software Architecture: Software
framework, services and persistency in high level trigger, re-
construction and analysis”, Computer Physics Communica-
tions 140 (2001) 31-44.

[3] J. Apostolakis, et al., “An overview of Geant4’s recent devel-
opments”, Proceedings of CHEP03, La Jolla, USA, March
2003.

[4] http://iguanacms.cern.ch/iguanacms

[5] S. Ashby, I.Osborne, J.P. Wellisch, C. Williams, “Code Or-
ganization and Configuration Management”, Proceedings of
CHEP 2001, Beijing, China, September, 2001.

[6] G. Alverson, G. Eulisse, S. Muzaffar, I. Osborne, L. Taylor,
L.A. Tuura, “IGUANA Architecture, Framework and Toolkit
for Interactive Graphics”, Proceedings of CHEP’03, La Jolla,
USA, March 2003.

[7] S. Wynhoff, et al., “Using the reconstruction software,
ORCA,in the CMS datachallenge 2004”, CHEP’04, Inter-
laken, Switzerland, September 2004.

[8] S. Abdullin, et al., “An Object-Oriented Simulation Program
for CMS”, CHEP’04, Interlaken, Switzerland, September
2004.

[9] D. Duellmann, et al., “POOL Development Status and Plans”,
CHEP’04, Interlaken, Switzerland, September 2004.

[10] M. Liendl, et al., “The Role of XML In The CMS Detector
Description Database”, Proceedings of CHEP 2001, Beijing,
China, September, 2001.

[11] G. Alverson, G. Eulisse, S. Muzaffar, I. Osborne, L. Taylor,
L.A. Tuura, “IGUANA Interactive Graphics Project: Recent
Developments”, CHEP’04, Interlaken, Switzerland, Septem-
ber 2004.


