
New Experiences with the ALICE High Level Trigger Data Transport
Framework

Timm M. Steinbeck∗, Volker Lindenstruth, Heinz Tilsner,
Kirchhoff Institute of Physics, Ruprecht-Karls-University Heidelberg, Germany,

for the ALICE Collaboration
Abstract

The ALICE High Level Trigger (HLT) is foreseen to
consist of a cluster of 400 to 500 dual SMP PCs at the
start-up of the experiment. Its input data rate can be up
to 25 GB/s. This has to be reduced to at most 1.2 GB/s be-
fore the data is sent to DAQ through event selection, filter-
ing, and data compression. For these processing purposes,
the data is passed through the cluster in several stages and
groups for successive merging until, at the last stage, fully
processed complete events are available. For the trans-
port of the data through the stages of the cluster, a soft-
ware framework is being developed consisting of multiple
components. These components can be connected via a
common interface to form complex configurations that de-
fine the data flow in the cluster. For the framework, new
benchmark results are available as well as experience from
tests and data challenges run in Heidelberg. In addition the
framework has been used during testbeam experiments of
an ALICE TPC prototype chamber.

OVERVIEW
ALICE [1] [2] [3] is A Large Ion Collider Experiment

for the future Large Hadron Collider (LHC) being built at
CERN. It will take data in different modes of LHC oper-
ation, in pp as well as in heavy-ion collisions. From the
point of view of its High Level Trigger (HLT) [4] sys-
tem among the most important characteristics in heavy-ion
mode are the maximum event size up to 75 MB. Together
with the event rates from the different detectors, e.g. up
to 200 Hz for the TPC, this defines the requirements for
the data stream that the HLT has to handle. In pp mode
the requirements on the data stream are somewhat lower
with a maximum TPC rate of up to 1 kHz and an event size
of about 2.5 MB taking into account the pile-up of 20 pp
events. But in this mode the higher event rates from the
detectors are emphasised which also have to be handled by
the system.

ALICE HLT’s primary task is the reduction of its input
data stream of up to 25 GB/s to at most 1.2 GB/s, which
are accepted by the data acquisition for storage to tape. For
this purpose three basic measures are taken by the trigger
system: filtering of interesting events, selection of regions-
of-interest in events, and online compression of the filtered
and selected event data. In order to fulfill its purpose the
HLT performs a full online event reconstruction from the
raw data of the detectors participating in the trigger deci-

∗ timm.steinbeck@kip.uni-heidelberg.de

sion. A PC cluster of initially 400 to 500 dual CPU PC
nodes will be used to perform the analysis. The cluster
nodes will be arranged in multiple hierarchy levels match-
ing the detector layout as well as the sequence of analysis
steps required.

THE DATA TRANSPORT FRAMEWORK

As the exact processing sequence and hierarchy for the
HLT are not yet fixed a flexible and efficient software
framework [4] [5] [6] has been developed to transport
the event data through the cluster. It consists of multi-
ple independant components communicating via a fixed in-
terface according to the publisher-subscriber or producer-
consumer principle. Named pipes are used to exchange
small messages and descriptors between the components,
while shared memory is used for the event data itself, re-
ducing the amount of copying being done to a minimum.

In addition to a number of finished and ready-to-use
data-flow components templates are provided for applica-
tion specific components. Components for different tasks
can be easily built using these templates: Obtaining data
and inserting it into a component chain (data source tem-
plate); accessing input data, processing it and producing
some new output data (data processing template); access-
ing input data and providing data to entities outside of a
component chain (data sink template). Existing data flow
components provide means to merge different parts be-
longing to the same event (Event Merger), split and rejoin
a stream of events, e.g. for load-balancing, (Event Scat-
terer & Gatherer), and to send event data across a network
between different nodes (Subscriber & Publisher Bridge
Heads).

BENCHMARKS AND TESTS

Interface Benchmarks

In order to determine the performance and scaling be-
haviour of the current framework interface versions and
expand the existing data set the publisher-subscriber inter-
face has been evaluated on a number of different PCs. The
evaluation consists of benchmark publisher and subscriber
components. In the benchmark the publisher announces
events in succession as quickly as possible up to a specified
limit of events that are in transit at any time. The subscriber
receives these events and immediately sends an event re-
lease message back to the subscriber. Neither of these two
components actually places or retrieves any data in shared

memory or dereferences descriptors to shared memory lo-
cations. Only the exchange of descriptors and messages is
measured by this test.

Results of the test are shown in table 1. All tests have
been run under Linux, with different kernel versions. On
some of the dual SMP PCs the tests have been run with a
single CPU kernel in addition to the SMP kernel. The er-
ror in the SPECint rating in the table approximately reflects
the variations between the benchmarked configurations and
those present in the SPECint result list. Among the most
striking things in the benchmark measurements are the poor
results from the whole Pentium 4 family (Celeron, Pen-
tium, and Xeon). These results can most likely be ex-
plained by the family’s level 1 (L1) cache size and the fact
that the components use two named pipes to communicate,
one each from publisher to subscriber and vice-versa. As
each of these pipes uses a memory area of 4 kB in the ker-
nel the CPU’s 8 kB L1 data cache is quickly filled. This
filling then leads to a lot of cache thrashing as data pieces
are quickly replaced in the cache before being reused of-
ten enough. In contrast one can conclude that the AMD
Athlon and Opteron architectures profit from their large
L1 data caches of 64 kB each. Here the Opteron seems
to super-scale compared to the Athlon simply based on
clock frequency, which can most likely be attributed to
the Opterons’ improved internal architecture as well as its
larger L2 cache size of 1 MB compared to 512 kB. In
[4] the prediction was made that by the time ALICE and
the HLT start to operate the CPU overhead for a complete
event-announce-finished loop, as measured in this bench-
mark, would be at most 15 µs. Looking at the results
of the Opteron measurement and taking into account the
two CPUs involved, one can see that already now less than
18 µs CPU overhead per event announcement are used. As
this number can be expected to decrease further one can
conclude that the CPU overhead imposed by the framework
interface will reach the predicted 15 µs and be small when
ALICE and the HLT start to operate.

One should note, that the cache effects observed in these
benchmarks are somewhat of an artifact. They are unlikely
to be visible to such an extent in a real system, where analy-
sis code is processing the events. In such a scenario signifi-
cantly more CPU time will be used for analysis than for the
transport of the data in the framework, and a high fraction
of the CPU caches will be taken up by the event data, rather
than the framework descriptors. Nonetheless the bench-
marks show that the framework itself is efficient and pro-
duces only a small overhead for the transport of the data on
one node. Furthermore, burst announcements effects can
be expected to appear in a complex system, mainly due to
timeslicing of CPUs to processes in multi-tasking operating
systems. This burst pattern is expected to produce effects
of caching similar to those seen in these benchmarks. Sig-
nificant numbers of events can then be announced in bursts
in quick succession, supporting good cache reuse as well.

HLT Data Challenges

CF 0
AU 0

CF 1
AU 1

CF 2
AU 2

CF 3
AU 3

ST
ST

ST
ST

GM

ADC Unpacker

Clusterfinder

4*SectorTracker

Global Merger

Figure 1: Test Setup for the HLT Data Challenge

As a test of the stability of the framework when it is used
in a more complex systems a data challenge has been setup
on a small cluster in Heidelberg. The part of the cluster
available for the test consists of seven dual Pentium 3 nodes
with 800 MHz CPUs and 512 MB of memory each. In the
test a setup simulating a reduced TPC sector readout has
been used as displayed in Fig. 1. Four instead of six readout
PCs were used at the start of the chain and only two nodes
for sector level tracking and one for data merging. Since
the data challenge was intended as a stability test of the
data transport framework and not of any analysis code, no
actual processing components have been used. Instead the
analysis components have been replaced by dummy analy-
sis components that just copy a part of their input data into
their output area. The amounts of data to be copied have
been chosen to resemble the relative data sizes produced by
the corresponding real analysis components. Two dummy
analysis components were used on six of the PCs to utilise
both CPUs, for a total of 13 analysis components. Four
source components are used to insert test data from files
into the component processing chain. A final sink compo-
nent is used to measure the event rate achieved. In addition
to these application components 39 data flow components
are used throughout the system. For each data flow compo-
nent type listed in the framework section above at least one
instance has been used. This ensures that each type of data
flow component will be exercised during the test. After ac-
tivation the described setup has been running continously
for a month before being stopped explicitly without error
condition. During the running time more than 2 × 10

9

events have been transferred through the system, with an
overall average event rate of more than 780 Hz.

TPC Sector Beamtest

Beyond the local data challenges in Heidelberg the HLT
was also used during the beamtest of a TPC sector proto-
type at CERN in May/June 2004. The HLT was not used to

Table 1: Interface Benchmarks
CPU(s) Chipset Kernel Version SPECint Rating Event Rate /

(approx.) kHz
Dual Pentium 3 800 MHz Serverworks HEsl 2.4.23 700± 30 13.7± 0.03

Dual Pentium 3 800 MHz Serverworks HEsl 2.4.23 / 1 CPU 350± 10 11.1± 0.06

Dual Pentium 3 733 MHz Serverworks HE 2.4.23 660± 30 11.9± 0.2

Dual Pentium 3 733 MHz Serverworks HE 2.4.23 / 1 CPU 330± 10 10.1± 0.1

Celeron 4 1.7 GHz Intel 845 2.4.22 550± 100 9.2± 0.08

Pentium 4 2.6 GHz Intel 865 2.4.22 1100± 10 17.6± 0.1

w. HyperThreading
Pentium 4 2.6 GHz Intel 865 2.4.22 1000± 30 18.9± 0.8

no HyperThreading
Dual Xeon 4 2.8 GHz Unknown 2.4.20 2400± 30 20.5± 0.005

w. HyperThreading
Athlon 600 MHz AMD 750 SuSE 2.4.20 300± 100 24.6± 0.1

Dual Opteron 248 2.2 GHz AMD 8XXX 2.4.20-8 2700± 30 117.2± 0.2

provide online data analysis capability for this test. Instead
the aims of the participation were to gain some experience
in using the HLT in a real experimental situation and to test
the functionality and correctness of the hardware interface
between the HLT and DAQ systems [4].

This interface uses the ALICE Detector Data Link
(DDL) optical links between DAQ and HLT. Detectors are
readout by the DDL into PCI DAQ Read-Out Receiver
Cards (D-RORCs) in DAQ front-end PCs, Local Data Con-
centrators (LDCs). Splitters on the LDC D-RORCs trans-
mit the data via identical DDLs to PCI HLT Read-Out Re-
ceiver Cards in HLT Front-End-Processor PCs (FEPs). The
HLT-RORCs place the received data into the PCs main
memory to be retrieved by dedicated framework source
components. At the end of a HLT component chain a
sink component retrieves the HLT output data’s address and
feeds it to another PCI card, the HLT Output card (HLT-
Out). The HLT-Out then retrieves this data from the com-
puter’s main memory and sends it again via DDL to a D-
RORC in a DAQ-LDC.

In the setup that was intended to be used for the beamtest
three DAQ and HLT PCs each were involved. One DAQ
LDC received data from the detector prototype via two
DDL links and two D-RORC adapters. Each of the DDLs
was forwarded via the D-RORC splitter to a HLT-RORC in
a separate HLT FEP. Data from the HLT FEPs is sent via
TCP over Gigabit Ethernet to a third HLT node. It merges
the data and sends it to a second DAQ LDC, using an HLT-
Out, DDL, D-RORC sequence. Both DAQ LDCs send their
received data to the third DAQ PC, a Global Data Concen-
trator (GDC). Finally, the GDC merges the event data and
transmits it to permanent storage.

During the activation of the setup problems occured
which were traced to the 2 MB data size limit in the pro-
tocol of the DDL. In order to work around the problem the
HLT setup used was decreased from two receiving links
and FEPs to one. In the HLT setup actually used there

have therefore been only two PCs in total, one receiving
data from the detector via DAQ and one sending data to
DAQ. Between these two HLT PCs data was transferred as
planned using TCP over Gigabit Ethernet. Another prob-
lem related to the trigger of the testbeam setup caused the
input data rate to remain below 5 Hz during the time of
HLT activity. Regarding the achieved rates the HLT was
therefore not put under stress.

The software setup used on the three/two HLT PCs is
shown in Fig.2. In the final setup one RORCPublisher
source component was used to access the data written into
main memory by the HLT-RORC. This data was written to
the PC’s local disk by a StorageWriter sink component as
well as sent over the network to the second active PC. On
the second PC two sink components determine the rate at
which event data is received and feed the received data to
the HLT-Out card in the PC for transmission to DAQ as
detailed above.

During the test both the DAQ-HLT interface as well as
the HLT software components functioned well. Data could
be received from the D-RORC’s splitter and sent back to
the second D-RORC without problems. The software also
worked as expected without difficulties during operation.

SUMMARY AND OUTLOOK
From the results presented in this paper one can see that

the ALICE High Level Trigger Data Transport Framework
is already quite mature. Even on relatively old hardware it
shows performance that is good enough for use in heavy-
ion mode of ALICE and can be expected to be fast enough
for proton-proton mode on newer hardware. CPU overhead
due to the publisher-subscriber interface has been mea-
sured to be low enough even on contemporary hardware
and should be even lower by the time ALICE starts to op-
erate. The data challenge in Heidelberg with its one month
of continous running time has demonstrated that the frame-
work has reached significant stability. The component ap-

DDL

Switched off due to
data limit on DDL

Node alice−hlt04
RORC

Publisher

Subscriber
BridgeHead

Node alice−hlt00

Publisher
BridgeHead

Publisher
BridgeHead

Event
Merger

Storage
Writer

HLT−Out
Subscriber

EventRate
Subscriber

HDD

Node alice−hlt05
RORC

Publisher

Subscriber
BridgeHead

Storage
Writer

HDD

DDL

DDL

Figure 2: HLT Setup for the TPC Sector Beamtest

proach chosen for the framework has proven to be useful
both for short tests as well as during the beamtest partici-
pation, because of the abilities to quickly create small con-
figurations and easily adapt configurations to changing re-
quirements. In the future more performance tuning will be
attempted as well as work on integration with the TaskMan-
ager control system [7]. The focus there will lie in par-
ticular on fault tolerance capabilities, making use amongst
others of the framework interface’s dynamic connection
ability. The framework together with auxiliary packages
is available from [8], documentation can be found at [9].

ACKNOWLEDGEMENTS
Work on the ALICE High Level Trigger has been

financed by the German Federal Ministry of Edu-
cation and Research (BMBF) as part of its pro-
gram “Förderschwerpunkt Hadronen- und Kernphysik -
Großgeräte der physikalischen Grundlagenforschung”.

REFERENCES
[1] http://ALICE.web.cern.ch/ALICE/.

[2] http://ALICE.web.cern.ch/ALICE/user.html.

[3] The ALICE Collaboration, “ALICE - Technical Proposal
for A Large Ion Collider Experiment at the CERN LHC”,
CERN/LHCC/95-71, LHCC/P3, December 1995.

[4] The ALICE Collaboration, “ALICE - Technical Design Re-
port of the Trigger, Data Acquisition, High-Level Trig-
ger, and Control System”, CERN/LHCC/2003-062, January
2004.

[5] T. M. Steinbeck, V. Lindenstruth, H. Tilsner, “A Software
Data Transport Framework for Trigger Applications on Clus-
ters”, CHEP03, La Jolla, USA, 2003.

[6] T. M. Steinbeck et al., “A Framework for Building Distributed
Data Flow Chains in Clusters”, Lecture Notes in Computer
Science LNCS 2367, Proceedings of the 6th International

Conference on Applied Parallel Computing, PARA 2002,
Springer Verlag Berlin Heidelberg, 2002.

[7] T. M. Steinbeck, V. Lindenstruth, H. Tilsner, “A Control Soft-
ware for the ALICE High Level Trigger”, CHEP04, Inter-
laken, Switzerland, 2004.

[8] http://www.ti.uni-hd.de/HLT/software/software.html

[9] http://www.ti.uni-hd.de/HLT/documentation/
documentation.html

