
MIS-USE CASES FOR THE GRID*

 D. Skow#, FNAL, Batavia, IL 60510, USA

Abstract

Development of expected use cases is a common early
step in the design phase of developing new technologies.
The author argues for the creation of mis-use cases as
well. These help guide the developers in understanding
the types of protections and controls needed so the
various stakeholders can effectively balance their risk
tolerance with expected gain.

This document presents an extrapolation of one current
attack pattern to a Grid environment and a discussion of
the types of controls and developments needed to provide
a robust Grid on today’s Internet.

INTRODUCTION
It is clear that the general Internet environment has

changed substantially from that which gave birth to the
Web in the early 1990’s. The user population has
exploded and the abuser population has grown with it. For
our own system reliability, as well as limiting the liability
our resources will be misused to harm others, we have to
take measures to defend against and respond to attacks.
No system is foolproof and so tradeoffs must be made.
We need to “know the enemy” in order to make
appropriate tradeoffs based on real assessments of risk
rather than wishful thinking. We also need to design
ahead as rapid modification of production systems is
extremely difficult.

Know the Enemy
The stereotype of the teenage male bent on exploring

all corners of the Internet is a common perception of the
attacker community. There’s evidence from the few
successful prosecutions that end up identifying the source
of attacks that this is indeed an active population. The
attacks are usually characterized by exploration and rarely
intentionally harmful. One has a hard time attaching the
word “enemy” to this population, “pest” comes more
naturally, and many people consider this and annoying but
relatively minor activity, like graffiti.

However, just as the automation of vulnerability probes
lead to the curse of the Internet worm, so too the Grid
offers new possibilities for automation and distribution of
malicious software (malware).

We must recognize, as will the bad guys, the attraction
of “getting something for nothing” that the Grid offers. If
we build a successful infrastructure, they will come. We
must be prepared to deal with the pests short of burning
down the house.

Who is the “enemy”? Certainly it includes the teenage
vandal. It also includes the legitimate user who’s made a
mistake that is rapidly replicated across the Grid. It

includes experimenters trying out new ideas on the
production Grid, which induce problems and/or failure. It
includes criminals looking to hide their tracks and/or
exploit resources. The larger the pool of resources that are
available to a successful attack, the more incentive and
larger the population of attackers.

How will they attack ?

We can predict the initial attacks by straightforward
extrapolation of current trends on the general Internet. In
fact, all grids on the Internet are under attack today from
exploits using vulnerabilities in common software (e.g.
the operating system, common libraries, …).

We can also predict with some confidence that the
progression of attack types will likely recapitulate the
Internet attacks as the Grid becomes more ubiquitous.
First methods will likely be to hijack credentials
(analogous to cleartext password attacks), next exploit
vulnerabilities in commonly deployed software, and then
exploit of grid management/forensics tools and/or custom
development of attack tools. (It is interesting to note that
there is a great deal of technical overlap between the two.
It is probably the case that advances in one helps the
other. Good tools however are essential to efficient,
affordable operations.)

LIFECYCLE OF A GRID WORM
Consider the example of a Grid worm. Biological

analogies are often quite apt in describing malware. A
worm is a piece of software that explores its environment
and tries to automatically exploit available resources. This
is uncomfortably close to a description of an opportunistic
Grid job – one of the common use cases given for Grid.
We need to understand the mis-use case, how to
distinguish it from the legitimate use case, and build in
controls lest the parasite kill the host.

A generic worm has three distinct stages of life: birth
(the insertion of basic executable), growth (acquisition of
privileges), and reproduction (propagation). Each phase
offers opportunities for defence and detection.

Birth
Somehow the worm executable has to be initially

invoked. This may or may not be the same method that
the worm later uses to spread. In fact, several methods are
usually tried for both steps. Common methods of insertion
include: credential/session hijack, command insertion,
trojan software, and user enticement.

If the bad guy can obtain the credentials of a legitimate
user, then s/he can start the worm executable directly as

that user with whatever fights the user has. If the badguy
can hijack an established session, that suffices as well in
most cases. The defence focuses on strong authentication
and authorization systems. Authentication (e.g. “Halt!
Who goes there?”) systems must protect against exposure
and/or theft of authentication secrets (or tokens directly).
Authorization (“Advance, and be recognized.”) systems
must allow for compromised identities to be stopped.
Death can come from a single hit in a vital organ as well
as a thousand nicks.

Buffer overflow is the most commonly known method
of exploiting and application to insert an unintended
command. There are several other standard exploits to
achieve the same end (e.g. replacement of temporary files,
spoofed data, etc.). The defences against these at the
developers’ level are largely well known also (e.g. check
all inputs for validity, check return codes, avoid race
conditions, etc.). They must become common practice in
all widely deployed software to close this pathway. From
as system management standpoint the least vulnerable
service is one you don’t run. Unneeded services should be
turned off and those running should be regularly
monitored and patched.

Alternately, the badguy can attempt to have an
authorized user execute his/her program. Common
methods are to replace an expected executable with
modified copy (the Trojan horse) or to somehow entice
the user to execute code provided by the bad guy (e.g.
embedded weblinks in email or on other webpages).
Defence relies on educated and alert users. Detection is
also hard and focuses on accounting turning up
unexpected modifications and/or usage.

Growth
In most cases, the initial insertion is a limited toehold

into the compromised system. Quite often the worm needs
to obtain more information or privileges to effectively
spread. Many worms have very small initial executables,
which then download more extensive attack software.
Privilege collection may be “getting root,” looking for
unprotected user credentials (e.g. private key or proxy
collection) or both. This information collection phase
often remains running until the worm is found and
removed, occasionally sending on information it collects

Defensive measures are similar to the previous phase,
but one now has to also defend against those exploits that
are not effective over the network (local exploits). One
can frequently find these ongoing collection processes by
monitoring accounting logs and looking for unusual
duration or network connections. Of course, this requires
that logs are secure against tampering (a commonly
attempted trick worms use to hide their traces) and are
monitored.

Reproduction
A worm which doesn’t rapidly reproduce is of limited

concern – though the first clouds of mosquitoes of
summer remind the author that if the initial infestation is
prolific enough, there’s no need for reproduction to drive

one crazy. Current worms often attempt multiple methods
of reproduction and they may well learn (utilizing locally
collected information or updates from “mother”).
Biological parasites have learned that too aggressive
propagation destroys the host environment (themselves
along with it) and there are indications that the electronic
varieties are learning this too.

Defences require defendable points. Not all bottlenecks
are bad. They provide points where defenders can ward
off more numerous attackers and contain the losses.
Strategically placed throttle points in software and in
networks can provide places where alarms on unusual
utilization can be raised and where controls can be
imposed. These controls will need to be automated to be
effective against automated attacks and they will need to
be applied both inbound (to defend against infection) as
well as outbound (to contain spread). There may be
possibilities in the wider use of IPSEC and/or dynamic
network access control to help in this area.

Similarly, diversity increases survival odds of the
species. Yes, this has costs in efficiency, but homogenous
systems are particularly vulnerable to wide-scale exploit
of common vulnerabilities. A moderate level of diversity
should be encouraged both to aid in the discovery of
errors and vulnerabilities as well as increasing the odds of
continued functionality of some portion of the ensemble.

Death ?
Individual biological worms eventually die, and yes,

most electronic worms are eventually found and killed as
well and the biological analogy continues to be apt. We
may, with heroic effort and a global program, be able to
eradicate some type of worm from the world, but we are
unlikely to be able to eliminate parasites and we
reintroduction remains a constant threat whenever there is
an un-inoculated population.

CONCLUSIONS
Like the first day of school, participation in the Grid

holds great promise, but it also exposes the participants to
a much wider world of “germs”. We should expect that
“colds” will be exchanged and we should prepare for
dealing with them while the antibodies are developed.

ACKNOWLEDGEMENTS
The author gratefully acknowledges the benefit from a

great number of conversations with colleagues
particularly in the GGF, DOE and HEPiX meetings. Matt
Crawford is particularly thanked for presenting this talk
when the author was unable to attend the conference. The
book “Beyond Fear”[1] is recommended as a particularly
good overview of security analysis.

REFERENCES
 [1] B. Schneier, Beyond Fear, Copernicus Books, ISBN

0-387-02620-7, 2003.

