
THE GANGA USER INTERFACE FOR PHYSICS ANALYSIS ON
DISTRIBUTED RESOURCES

A. Soroko, Department of Physics, University of Oxford, OX1 3RH, UK

C.L. Tan, School of Physics and Astronomy, University of Birmingham, B15 2TT, UK
D. Adams, BNL, Upton, NY 11973-5000, USA

K. Harrison, Cavendish Laboratory, University of Cambridge, CB3 0HE, UK
P. Charpentier, A. Maier, P. Mato, J.T. Moscicki, CERN, CH-1211 Geneva 23, Switzerland

 U. Egede, J. Martyniak, Physics Department, Imperial College London, SW7 2AZ, UK
R. Jones, Department of Physics, University of Lancaster, LA1 4YB, UK

G.N. Patrick, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK

Abstract
A physicist analysing data from the LHC experiments will
have to deal with data and computing resources that are
distributed across multiple locations and have different
access methods. Ganga helps by providing a uniform
high-level interface to the different low-level solutions for
the required tasks, ranging from the specification of input
data to the retrieval and post-processing of the output. For
LHCb and ATLAS the goal is to assist in running jobs
based on the Gaudi/Athena C++ framework. Ganga is
written in python and presents the user with a single GUI
rather than a set of different applications. It uses
pluggable modules to interact with external tools for
operations such as querying metadata catalogues, job
configuration and job submission. At start-up, the user is
presented with a list of templates for common analysis
tasks, and information about ongoing tasks is stored from
one invocation to the next. Ganga can also be used
through a command line interface. This closely mirrors
the functionality of the GUI, allowing easy transition
from one to the other. This paper describes the Ganga
design and functionality, and illustrates its use in the
distributed analysis systems of the LHCb and ATLAS
experiments in the context of their 2004 data challenges.

INTRODUCTION
Physics studies in ATLAS and LHCb will require

analysis of the Petabytes of data that each will record at
the Large Hadron Collider (LHC), under construction at
CERN. The analyses will rely on computing resources
distributed across many national and regional centres.
These will be collected together and shared in a
coordinated manner using grid services. The middleware
for the grid services is provided by projects such as
Globus [1] and LCG [2]. The experiments have developed
their own services on top of the grid middleware, to
extend the functionality, and to allow interaction with
multiple distributed computing environments. Examples
of these experiment-specific solutions include the
DIRAC [3] workload-management system of LHCb and
the DIAL [4] service that is a part of the ATLAS
Distributed Analysis (ADA) system.

ATLAS and LHCb both use the Gaudi/Athena [5] C++
framework, designed to support all event-processing

applications, including simulation, reconstruction and
physics analysis. The similarity in the approaches of the
two experiments has led to the setting up of Ganga [6] as
a joint project aiming to provide a uniform front-end for
managing framework-based jobs in a distributed
environment.

Ganga assists the user in all phases of a job’s life cycle.
It helps in job creation, configuration, splitting,
submission, monitoring, and output collection. It provides
interfaces to experiment specific resources such as the
metadata catalogue and bookkeeping database, which
strongly facilitate physics analysis. Ganga does not
provide its own grid services, but can use either generic
grid services of LCG or the specialised services provided
by DIRAC and DIAL. It can also use the computing
resources of a local batch system or the user’s PC.

In this paper we present the Ganga design and describe
the functionality of different Ganga components and the
user interface. We then explain how the user interacts
with Ganga in order to execute an analysis job. In
particular, we give an example of running an LHCb
analysis job with the DIRAC system.

GANGA COMPONENTS
Ganga is implemented in python, an interpreted

scripting language, using an object-oriented approach and
following a component architecture, which benefits
greatly from python’s support for modular software
development. The user has access to the functionality of
Ganga components either through a Graphical User
Interface (GUI) or through a Command-Line Interface
(CLI) built upon a common Application-Programmer
Interface (API).

The components of Ganga are connected via a so-called
software bus [7], which in practical terms is a python
module that follows a few non-intrusive conventions. The
initial functionality of the software bus is provided by the
python interpreter itself. In particular, the interpreter
allows for the dynamic loading of modules, after which
the bus can use introspection to bind method calls
dynamically, and to manage components throughout their
life cycle. The component-based approach has the
advantages that it allows parallel code development, and
that components from other systems with a similar

architecture can easily be incorporated into the main
framework.

Ganga components fall into three categories: core,
which define classes to support basic functionality;
specialised, which address invocation of specific
resources; and external, which heavily rely on third-party
code and/or services. Both specialised and external
components work like plug-ins and are not necessarily
present in a given users Ganga installation. Below we
describe the Ganga components in more detail.

Core Components
In the Ganga design, a distinction is made between a

job, an application, and data. It allows running the same
application on different computing systems with different
types of file access. A job in Ganga terminology is what is
actually submitted. An application is a computer program
that the user wants to execute (the executable) together
with any necessary configuration parameters, and data
representing the input and output files for the application.
Core Components provide generic interfaces for all of
these objects, thus forming the Ganga design model.

A job-registry component provides the means to store
and recover job information. It also contains important
job metadata, like status, type of application, targeted
batch system, timestamps etc. The job registry class has
methods to initiate all job-related operations, including
multithreaded monitoring. Essentially, these methods
form an API used by the Ganga CLI and GUI.

Another component involved in the GUI construction is
the abstract definition of a user interface. This component
describes objects, which must be shown to the user, in
terms of graphical widgets. As a result, the GUI for
pluggable components can be built dynamically.

Core Components are not bound to any specific type of
application, and in particular do not depend on the use of
the Gaudi/Athena framework. They are self-consistent
and may be used outside of Ganga to build other
applications.

Specialised Components
In contrast to the core components, the specialised

components serve the interests of various user groups and
are very specific. Some of them such as Job, Application
and File Handlers implement corresponding interfaces
provided by the Core Components for different types of
grid/batch systems, applications, and storage elements.

In particular, job-handling components manage job
submission to LCG/EDG, DIRAC, DIAL, PBS, LSF, and
local PCs. They perform job configuration by translating
resource requests, for example minimum CPU time or
minimum memory size, into the format expected by the
target system, e.g., they create job description language
(JDL) files for job submission to the grid. They also
generate workflow scripts to be executed on the worker
node, and issue specific commands as required for job
monitoring, output retrieval and job termination.

Application-handling components provide
configuration templates and cover specific tasks for a
particular type of application. For example, the handler
dealing with the LHCb analysis applications sets up the
environment, discovers user DLLs and collects them for
subsequent uploading to the worker node, creates
configuration files, etc. Ganga has specialised support for
ATLAS and LHCb applications based on the
Gaudi/Athena framework. A handler for applications
used in the BaBar experiment has also been implemented,
and has been used successfully.

File-handling components transfer input and output
files between worker nodes and different storage
elements. They understand both logical and physical file
names and support sandbox, gridftp, replica manager, and
castor file-transfer commands.

Job splitters are scripts designed to create a collection
of subjobs from a bulky initial job (macro job) for
subsequent parallel submission and execution. Algorithms
for job splitting may be different and vary among
experiments. At the moment Ganga implements the
simplest possibility, based on the splitting of a macro
job’s input dataset. In the future more complicated
algorithms will be implemented and shipped with the
Ganga distribution. Even now, though, experiments
and/or experienced users may add their own job splitters
to the script repository and the Ganga framework will
automatically adopt them. In practice, to split a job, a user
has to select the splitting script from the repository and
possibly specify the desired number of subjobs. Ganga
then does the rest. It creates and configures the subjobs
and allows the user to submit all of them by submitting
just the macro job. During monitoring, Ganga determines
the status of the macro job according to the status of
subjobs. Work is in progress to allow automatic merging,
where desirable, of the outputs from the sub-jobs.

A prominent role among the specialised components
belongs to the graphical Job-Options Editor (JOE), which
significantly decreases the difficulties in creating and
modifying the options files used for application
configuration within the Gaudi/Athena framework. A job-
options file may be written as a text file, of may be in
python, and may include any number of additional
options files. JOE helps with the manipulation of options
files by providing guidance on known options/values,
using a database built by scanning and analysing the
Gaudi/Athena release areas. It also reduces the likelihood
of errors in syntax and spelling. The JOE GUI further
helps the user by offering a collapsible tree
representation, which allows options, attributes or
included files of interest to be viewed on demand.
Multiple job option files may be open for editing
simultaneously using window tabsPreview of the job
options file that is currently being edited in text format.

External Components
One of the first steps in a physics analysis is the

selection of a dataset. ATLAS and LHCb both store
information on datasets in metadata catalogues, although
the catalogue contents, and the set of valid queries, for the
two experiments are different. Ganga relies on external
components to perform querying of these catalogues, and
to allow the user-selected datasets to be added to an
appropriate configuration file. An LHCb-specific
component has been implemented, which additionally
initiates automatic job splitting if the number of files in
the selected dataset is larger than has been allowed per

job. An ATLAS-specific component is at the prototype
stage.

Another example of an external component is the AJDL
job builder. AJDL is the Abstract Job Description
Language used in the ADA system. The building blocks
of an AJDL job are:

• Application, described by a name and a version
number;

• Task, representing a collection of files required by
the application;

• Dataset, which may be fetched from a catalogue;
• Preferences, which provide the means to fine-tune

the way the job is processed.
The AJDL job builder has a prototype GUI, which

allows the user to prepare an AJDL job easily. Work in
progress will enable monitoring through Ganga of AJDL
jobs submitted to ADA.

USER INTERFACES
Ganga provides both GUI and CLI interfaces for the

main job-management tasks. Specialised and external
components may bring their own GUI or such a GUI can
be built dynamically based on the abstract definition of
the user interface shipped with these components.

Ganga GUI
A general view of the Ganga GUI is presented in Fig. 1.

The layout of the main window (on the left of the figure)
consists of three parts: there is a tree control on the left
that displays job folders, which themselves may be
folders, in their respective states. There is a multi-purpose

Figure 1: Screenshot showing the general layout of the Ganga GUI. The main window is to the left, the window for
querying the LHCb metadata catalogue is to the right, the JOE window is in the centre, and the help window is
shown to the bottom right.

panel on the right, which facilitates many displays, a list
control in particular. Finally, there is an embedded python
shell. With the advanced (expert) view option activated,
the job folders, in the tree of job states, display a
hierarchy of all job-related values and parameters. The
most important values are brought to the top of the tree,
and less important ones are hidden in the branches. The
normal (user) view stops at the level of jobs and gives
access to the most important parameters only. The user
can also choose to hide the tree control completely. The
list control displays the content of a selected folder in the
job tree. The lower part of the frame is reserved for the
python shell, which doubles as a log window. The shell
allows for the execution of any python command, and
also permits access to, and modification of, any GUI
widget. The shell, too, can be hidden if desired.

Actions on jobs can be performed through a menu,
using a toolbar, or via pop-up menus called by a right
click in various locations.

When the monitoring service is switched on, jobs move
automatically from one folder to another as their states
evolve. To avoid delays in the program's response to the
user input, the monitoring service runs in its own thread.
It posts customised events whenever the state of a job
changes and the display is to be updated.

Ganga CLI
An API provided by the job registry class may be used

itself as a low-level command-line interface (CLI).
However, a higher-level CLI is under development. This
might be used to write splitting scripts, to record Ganga
sessions, to build various test utilities, and by users who
prefer a CLI to a GUI.

SUBMISSION OF ANALYSIS JOBS
The interaction between Ganga components may be

illustrated by considering the handling of analysis jobs;
submission of the LHCb analysis application, DaVinci, to
the DIRAC workload management system is taken as an
example. After having prepared and compiled the
package(s) required for a given analysis, the user selects
the package(s) and the DaVinci version number via the
Ganga GUI or CLI. The algorithm workflow and
algorithm parameters can then be edited using the Job-
Options Editor. The component interfacing to the LHCb
metadata catalogue can be invoked to select the dataset
that is to be analysed. Depending on dataset selection and
user settings, the job may be split automatically at this
point, either by the standard splitting script or by a splitter
supplied by the user. The user then presses the “Submit”
button in the GUI main frame, and the monitoring
component will update the job status as the job
progresses. When the job completes, the user browses the
job folder and collects the output.

A number of components are involved in the above
process behind the scenes. It is the job-registry
component that initiates creation of a new job object
when the submission process starts. It then connects the
appropriate application handler (DaVinci) and job handler
(DIRAC) to this job object. These handlers do the bulk of
the work. In particular, the application handler completes

creation of the job options file and informs the job
handler about any user-owned DLLs. The job handler in
turn generates the JDL file and XML job-description file
required by DIRAC. The job handler ships these files to
the DIRAC system and, after receiving the job ID,
periodically queries DIRAC for the job status. In the
meantime, on arrival at the worker node, the workflow
script may use the file-handling components to download
missing files and to prepare the output sandbox. The job
handler initiates the request for DIRAC services to
download the job output automatically when the job
status allows.

Submission of jobs to ADA is conceptually similar to
the submission to DIRAC. The main differences are that
the AJDL job builder is used for job configuration, and a
different component is needed for metadata queries. There
is also no need for the job splitters, as this is dealt with
internally by the ADA system.

OUTLOOK
Ganga has been developed as a joint project between

ATLAS and LHCb. Its modular design provides a uniform
user interface to different distributed resources, and
enables experiment customisation. The schedule of future
releases includes plans for:

• High-level CLI (scripting);
• Interfaces to other analysis services (gLite);
• The building of remote Ganga services running

under control of a local client;
• A GUI interface for the above client;
• Services to provide centralised persistency of user

jobs;
• Ganga session persistency (history, GUI

preferences);
• Roaming access to user profiles.
The Ganga project will then continue to keep pace
with, and adapt to, the evolving grid middleware and
experiment-specific services with the only intention to
make life easier for users.

ACKNOWLEDGEMENTS
This work has been supported by the GridPP

collaboration, and funding has been provided by the
Particle Physics and Astronomy Research Council
(PPARC).

REFERENCES
[1] http://www.globus.org
[2] http://lcg.web.cern.ch/LCG/
[3] http://dirac.cern.ch/
[4] http://www.usatlas.bnl.gov/~dladams/dial/
[5] http://cern.ch/Gaudi/
[6] http://ganga.web.cern.ch/ganga/
[7] http://wlav.home.cern.ch/wlav/pybus/

