
The evolution of the distributed Event Reconstruction Control System in
BaBar

A. Ceseracciu, SLAC, California, USA
T. Pulliam, Ohio State University, USA

for the BaBar Computing Group
Abstract

The Event Reconstruction Control System of the BaBar
experiment was redesigned in 2002, to satisfy the follow-
ing major requirements: flexibility and scalability.
Because of its very nature, this system is continuously
maintained to implement changing policies, typical of a
complex, distributed production enviromnent.
In 2003, a major revolution in the BaBar computing model,
termed Computing Model 2 (CM2), brought a particularly
vast set of new requirements in various respects, many of
which had to be discovered during the early production ef-
fort, and promptly dealt with. Particularly, the reconstruc-
tion pipeline was expanded with the addition of a third
stage. The first fast calibration stage was kept running at
SLAC, USA, while the two stages doing most of the com-
putation were moved to the 400 CPU reconstruction facil-
ity of INFN, Italy.
In this paper, we summarize the extent and nature of the
evolution of the Control System, and we demonstrate how
the modular, well engineered architecture of the system
allowed to efficiently adapt and expand it, while making
great reuse of existing code, leaving virtually intact the core
layer, and exploiting the ”engineering for flexibility” phi-
losophy.

EVOLUTION OF A SOFTWARE SYSTEM

The focus of this paper is the evolution of a software
system. The system is the Control System for BaBar Event
Reconstruction. One original design requirement of this
system directly concerned its evolution: flexibility.
We discuss here how designing for flexibility affected the
actual evolution of the system. The most effective solutions
will be highlighted.

THE BABAR EVENT RECONSTRUCTION
AND THE NEED FOR A CONTROL

SYSTEM

The Prompt Reconstruction (PR) system is part of the
software for the BaBar experiment. Its tasks are to gener-
ate calibrations, and to process the incoming data from the
detector performing a complete reconstruction of physical
events producing results ready for physics analysis. These
two tasks are done in two separate passes: the Prompt Cal-
ibration (PC) pass, and then the Event Reconstruction (ER)
pass.
The data obtained from the detector Data Acquisition Sys-

tem (DAQ), are stored in files using a format known as “ex-
tended tagged container” (XTC file). There is a 1-to-1 cor-
respondence between data runs and XTC files.
The Prompt Calibration pass calculates and stores the new
calibrations for each run in the calibration database, de-
scribed in [1]. These calibrations are then used by the Event
Reconstruction pass of the run which produces fully recon-
structed events and writes them to the Root I/O event store
database. Event Reconstruction is processed by multiple
farms of 64 to 100 CPUs.
Each farm processes one run at a time. For each run,
an instance of a daemon known as the Logging Manager
(LM, see [2]) is started on a dedicated server. It distributes
the events read sequentially from an XTC file to multi-
ple reconstruction processes running on the farm machines
(nodes). The Prompt Calibration farm must process runs in
sequential order, as the calibration uses information from
the previous runs, while the Event Reconstruction farm is
only constrained to process runs that have been calibrated.
A detailed discussion about the BaBar Prompt Reconstruc-
tion model is given in [3].
The Event Reconstruction Control System automates the
operations to make it possible to process long sequences of
data runs with minimum human intervention. It has been
presented in [4].

FLEXIBILITY

Defining Flexibility

Flexibility is defined in [5] as the quality of being adapt-
able. This is the same quality that allows living entities
to increase their fitness to their environment, which is, to
evolve.
We propose here a metric for evaluating flexibility in soft-
ware. The idea is to consider the overhead in run-time per-
formance or development time introduced by increase in
complexity.
We may then express flexibility F as a function of the aver-
age time τ needed to add a new feature or to fix a bug, and
the complexity C: F =

dτ

dC
. A basic metric for complexity

C in software is the number of lines of code (LOC).
An ideal flexible system is one in which the average effort
required for adding a new feature or fixing a bug is con-
stant, regardless of the complexity. That is: F = 1.
Common programming experience tells that real systems
tend to be far from ideal, or, F >> 1. Every programmer
knows that it is more difficult to debug a 1,000 lines long
program than a 10 lines one.

We will use this metric to qualitatively evaluate the flexibil-
ity of our Control System. We don’t have enough statistics
to provide a number for F .

The requirement of flexibility

Flexibility is clearly a valuable quality for any software
system. It must be paid for, though, in terms of design and
development effort. Hence, when specifying requirements,
it should be stated the extent and domanins in which flexi-
bility is needed.
The case of our Control System needs flexibility for a num-
ber of reasons:

• complexity: it is a distributed system. Such a system
is inherently complex, and flexibility is a most effec-
tive means to control complexity. It restrains local de-
velopment and changes from affecting, and potentially
harming, different parts of the system.

• evolution in time: it was known in advance, from ex-
perience with the previous system, that pressure for
changes over time would be constant and demand-
ing. Rapidity and effectiveness of adaptation to new
requirements was deemed of great importance at the
design level. In fact, during two years of lifetime, the
codebase of the system has been steadily increasing
by adding new features.

• evolution in space: being able to run on different
hardware and software infrastructures, with differ-
ent constraints, software installations, and platforms,
was a requirement to make distributed data production
possible. It was also deemed important to support dis-
tributed development, isolating components specific
to a local infrastructure.

• human interface: changes in the setup and configu-
ration of a running installation of the system must be
simple and safe enough to be performed by relatively
untrained “on shift” operators, and at the same time
powerful enough to grant a wide range of tuning.

DESIGNING FOR FLEXIBILITY

Flexibility is a concern at any design level. At the level
of bare code, we observe that good code tends to be flexi-
ble, or, flexibility is one of the metrics against which qual-
ity of code is commonly evaluated. At higher design level,
though, some patterns and considerations are particularly
relevant: modularity, protocols and interfaces, configura-
tion, abstractions, anticipation. We will consider all of
them here.

Modularity

A modular system is one in which the composing pieces
are standardized and can be assembled in ways not foreseen
by the designer. In a software context, this can be translated

into coding components rather than applications, and ways
to assemble them into a full system.
The main design concept to support modularity in the Con-
trol System is the Light Processing Framework (LPF). It
defines a bare operating environment and an abstract inter-
face for modules. The modules are then the standardized
components as in the previous definition. Every agent pro-
cess in the Control System is started by a single procedure
that instantiates the LPF and loads a custom configuration
on it.
The LPF is “Light” meaning that it provides very mini-
mal services, namely: a message passing service between
loaded modules, cooperative multitasking, static loading of
core modules and startup configuration.
Other services are taken care by core modules: inter-LPF
communication, transparent proxy service based on a Nam-
ing Service, controlled execution of external commands,
and many others.

Protocols and Interfaces

A modular system helps limiting the complexity of indi-
vidual components by limiting their domain of interaction
with the rest of the world to their interface. This is not
sufficient to say that it guarantees a system to be flexible:
the complexity of the interaction between components can
easily become the next limitation to the overall flexibility
of the system.
A clean interface design is important to control interaction
complexity, but not sufficient. Modeling interaction be-
tween components as a set of multi-party protocols helps
in understanding the dynamic relationship between them,
and in maintaining a flexible system.

Configuration

A modular system is made of components and a tech-
nology to assemble them together. This technology is the
configuration system. The power and quality of the config-
uration system plays a major role in the success of a mod-
ular design.
In a distributed system, the configuration is responsible not
only of assembling components into entities (processes),
but also entities into a whole distributed system.
In the Control System a computing farm is characterized
by a unique set of configuration files. These files contain
information of different levels:

• configuration of individual modules

• definition of entities (LPFs) as sets of configured mod-
ules

• binding of entities to host names

• definition of services as sets of bound entities

• hierarchical definition of higher level services as a set
of other services

state: CreateNodeEnv {

isA: OprRPStateCreateNodeEnv

onTransition: OK goTo: DistributeNodeEnv

onTransition: Failed goTo: FatalError

onEntry: OnEntry

timeout: 300

}

Figure 1: The definition of a single state in the FSM de-
scription.

• definition of a system as a set of services

The configuration information includes the topology of the
farm, and it is used for the activation of the system. A full
system, spanning tens of nodes, can be activated (booted)
by issuing a single command. The hierarchical description
of the topology of the farm is used to determine the startup
sequence, where each service is responsible for spawning
its sub-services.
The XML language is a natural choice for describing a
highly hierarchical structure such as our configuration.
Additional benefits of using XML are the availability of
macros, and combining different source files with consis-
tent handling of name spaces.
Common sense rules also apply, with special relevance: no
information is to be hardcoded, and the effect of any con-
figuration key must have well defined boundaries, e.g. a
key relevant for a given module should not be seen by any
other module.
There is in general a tradeoff to be considered between
power and complexity of the configuration system: a com-
plex configuration structure is also more difficult to main-
tain. From our experience, we can state that for a produc-
tion system, putting complexity in the configuration has
been a rewarding choice.

Abstractions

Extensive and proper use of abstractions in software de-
sign has a direct impact on flexibility: good abstractions al-
low us to separate implementation from policy, and to ex-
press the evolutionary pressure into new components and
policies, rather than modifications (hacking) on the exist-
ing code and infrastructure.
The main high level abstraction in the Control System is the
Finite State Machine (FSM) processing model. The FSM
model allows to split the high level task of processing a
unit of data (a run) into a set of steps, or states, approxi-
mately organized in a sequential manner. Transition to the
following state is conditioned to the outcome reported by
the previous. The typical semantics here is success/failure.
The definition of the FSM is coded in a custom language.
It is a simple stateless language, in which FSM states are
bound to physical code modules, and the transitions be-
tween states are defined. Figure 1 displays the actual def-
inition of a single state. The FSM also serves as a user in-

terface: it provides a transparent view on the current status
of a processing farm, and is used to interact with it. A typi-
cal pattern of interaction is: finding out the farm is stuck in
one particular state, which gives a hint of what the problem
could be; fixing the problem; resume operation of the farm
by forcing the FSM to re-execute the same state.

Anticipation

Anticipation is to foresee future paths of development.
This is important to understand where in the system flexi-
bility is most needed.
Studying this for our Control System was somewhat sim-
pler, as it was designed to replace a previously existing sys-
tem. Areas deserving attention were identified simply for
being recurrent problematic areas in the old system.

EVOLUTION

We use the word “evolution” as a synonym for “mainte-
nance”. That is to underline that any system under main-
tenance actually changes during time, and that is why a
planned and controlled evolution has a great importance in
maintaining or increasing the original qualities of a soft-
ware system.

Maintenance of a software system

Maintenance, like evolution, can happen in two regimes:
ordinary, or regular; and extraordinary, or major.
Ordinary maintenance is concerned with incrementally
adapting a system to variations in the environment. This
includes adding small features and fixing bugs. A system
hopefully spends most of its time in this regime. Typical
examples of ordinary maintenance in the Control System
are: implementing policy changes by modifying the FSM
description; adding new user commands to automate most
common commands patterns; supporting different I/O han-
dlers.
Extraordinary maintenance involves adapting a system to
substantially different tasks or requirements. As a result
of this transition, the shape of the system itself changes,
a great amount of code is added, and much code is also
removed or, at least, effectively disabled. It is often the
case that the “old” system has to be maintained in opera-
tion, alongside the “new” one, often for the sake of having
a tested backup system.
Often, a software system loses many of the qualities of the
original design during a phase of major maintenance, most
notably, encapsulation and isolation between components.
Two causes for this degradation can be pointed out: in-
sufficient flexibility in the original design, and inadequate
care in the new development to respect the original design
guidelines. Often, the latter conditions is due to not realiz-
ing that a given maintenance task is in fact “extraordinary”.

Extraordinary maintenance: a case

We will discuss now a case of extraordinary maintenance
as an example: the upgrade of the Control System due to
the advent of BaBar Computing Model 2 (CM2) [6].
From the Control System point of view, this upgrade can be
summarized as: moving from a centrally managed event-
store database to production and management of plain files.
So, a consistent amount of code dealing with database man-
agement became obsolete, while much new code had to be
added for ensuring integrity of data files and performance
of the event store. Moreover, a complex and time consum-
ing post processing stage had to be introduced to merge the
partial event data files produced by the individual process-
ing nodes into the final packaged data files to be shipped to
the central event store.
Under the evolutionary pressure brought by these new re-
quirements, the main lines of intervention on the Control
System codebase has been the forking of the FSM defini-
tion to implement the new processing model while keeping
the old one untouched; and coding the logic for the indi-
vidual new operations to be performed into new states. For
the post processing stage, an independent system was de-
signed, using the same core infrastructure but separate ap-
plication code. A filesystem based interface to the main
processing system was designed, in order to ensure data
consistency between the two stages and allow the number
of post processing systems to scale depending on the needs.
The upgrade was quickly implemented at a basic produc-
tion level and was ready in time for production deadlines.
Later development towards improved error checking and
data integrity insurance was conducted and deployed while
the system was in production mode, smoothly and with
very little negative impact on the production effort. At the
same time, the old processing model was always available
without needing to freeze older versions of the code base.

Codebase evolution

Figure 2 reflects the different development phases over
the lifetime of the Control System: during Core Develop-
ment there is development only on the core package, at high
rate. In Application Development the core development
slows down, while the application code grows extremely
fast. Three months later the system starts to be used in pro-
duction: application development slows down, and most
of the new code addresses issues emerging from the real-
world test. Both packages see the same amount of activity.
Few months later the main development effort is consid-
ered done, and the system is Stable and works in a main-
tenance only regime. There is very little code contributed
in this period, the curves are almost flat. This also cor-
responds to developers switching to other projects in the
same period. Then, a major change in the experiment’s
Computing Model (CM2) requires a major update to the
Control System. It is remarkable that very little is done
on the Core package, while the Application package grows
fast. This shows how much the core code was reused, and

LOC

03/2002 Months09/2002 11/2002 03/2003

Dev
Application

Production

Development

Core

Stable

CM2 Dev

06/2003 03/2004

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30

OprProcessingSys (APP):
OprControlSys (CORE):

Figure 2: The number of lines of code (LOC) in the two
packages (Core and Application) of the code repository, as
a basic metric for complexity. The plot reflects the different
development phases.

how the flexibility of the core allowed a rapid adaptation of
the system to a changed environment. Also, it is interest-
ing to note that the allocated development resources for the
project steadily decreased from an initial 3 FTE to a current
0.5 FTE.

CONCLUSIONS

This paper presents the Control System as a self-
evolving system under the pressure of environmental
changes. This artifice was to illustrate the importance of the
requirement of flexibility for a production system. In real-
ity, any stage of the system’s maintenance requires thought-
ful decisions, to maintain the code quality and the consis-
tency with the original design. High level design concepts
and frameworks offer an extremely valuable guidance to
those decisions during the lifetime of the system, but, they
can not make the system immune to the degradating effects
of bad design or bad coding taking place during its lifetime.
The experience with the BaBar reconstruction Control Sys-
tem displays how careful design and maintenance can grant
a valuable quality like flexibility to a software system.

REFERENCES

[1] I. Gaponenko, CDB - Distributed Conditions Database of
BaBar Experiment, CHEP2004, Interlaken (Switzerland), 29
Sep 2004

[2] S. Dasu, J. Bartelt, S. Bonneaud, T. Glanzman, T. Pavel, R.
White, Event Logging and Distribution for BaBar Online Sys-
tem, CHEP98, Chicago (USA), 31 Aug-09 Sep 1998.

[3] A. Ceseracciu et al. Distributed Offline Data Reconstruction
in BaBar, CHEP2003, San Diego (USA), 24-28 Mar 2003.

[4] A. Ceseracciu, The new BaBar Data Reconstruction Control
System, CHEP2003, San Diego (USA), 24-28 Mar 2003.

[5] Wordnet - http://www.cogsci.princeton.edu/ wn/

[6] P. Elmer, BaBar computing - From collisions to physics re-
sults, CHEP2004, Interlaken (Switzerland), 27 Mar 2004.

