
igprof
the ignominious profiler

Giulio Eulisse - Lassi Tuura
Northeastern University of Boston

2

Some history

• igprof stands for “the IGnominious
PROFiler” and it is found in the
IGNOMINY project.

• A.K.A. the “IGUANA profiler”

• A.K.A. “MemProfLib”

3

Use cases...

• Typical programming problems:

• “My code runs slow”

• “My code requires 1Gb of RAM”

• “My code runs slow AND requires 1Gb of
RAM”

+

4

Use cases...

• Typical solutions:

• buy a faster computer

• buy more memory

• buy a faster computer
AND more memory +

5

...or...

• Start doing some profiling of your code, to see
which parts of the system require more
memory, which require more CPU power and
then focus in optimizing those parts.

• igprof is a tool which allows to produce
sensible profiling information in an easy and
unintrusive way so that even the casual
developer can collect information useful for
code optimization.

6

igprof features

• Generic profiling framework: plugins already
present for performance and memory usage
profiling

• Memory leak detection tool

• Fast enough to actually profile CMS
simulation and reconstruction software

• Non-Intrusive

7

more features...
• Multiple profiling counters

• Post processing application provides a number of
filtering possibilities

• Multiple counters are allowed

• Optional code instrumentation

• Works with shared libraries and multithreaded
programs

• User space (no kernel/root fiddling)

8

igprof & other tools

• Complementary to oprofile & valgrind

• Oprofile: it is a more low level profiler, requires kernel
instrumentation and root user access, but has much
richer choice of possible performance measurements.

• Valgrind is much more accurate memory checking tool,
but does not profile allocations, it is much slower, and
works only on X86 architecture (at least as of 2.1)

9

IgProf architecture

igprof
Generic event collector and

dynamic function
instrumentantion core

P
ro

fi
lin

g
m

o
d
u
le

P
ro

fi
lin

g
m

o
d
u
le

P
ro

fi
lin

g
m

o
d
u
le

Profiling data analysis tool
igprof-analyse

10

Hooking mechanism

Calling function

Called function

CALL instruction

Arguments are
packed on stack

Preamble:
arguments
unpacked

Function code

Calling function

CALL instruction

Get results from
stack

11

Hooking mechanism

Calling function

Called function

CALL instruction

Arguments are
packed on stack

Trampoline

Function code

Calling function

CALL instruction

Get results from
stack

Profiling hook

Profiling

Preamble

12

Hooking mechanism

Calling function

Called function

CALL instruction

Arguments are
packed on stack

Trampoline

Function code

Calling function

CALL instruction

Get results from
stack

Profiling hook

Profiling

Preamble

The perfect
hacking solution!

13

Data structure

main
0b

foo()
10b

bar ()
100b

bar2 ()
20b

foo(){new char[10];}

bar() {

 for (int i=0; i < 10; i++) {

 new char[10];

 }

}

bar2 () {

 new int[5];

}

main () {

 foo();

 bar();

}

14

Result analysis

igProf.PIDigprof myAnalysisJob igprof-analyse

tree dump in XML

15

example output

Total possible leak
done by the

functions

515316 2912 TStreamerInfo::Build()(libcore.so)

189948 1640 TStreamerInfo::BuildOld()(libcore.so)

3462726 510296 CINT::Type::PatchStreamers(liblcg_Ro

[32] 514848 513248 TStreamerInfo::Compile (libCore.so)

3200 1600 TObjArray::AddAtAndExpand(TObjec

0 0 TStreamerInfo::ComputeSize() (libCor

Rank of the
function in the
possible leak

tree

Amount of
memory

possibly leaked
by the function

itself

Amount of
memory leaked
when called by

the function
being analysed

Total memory
leaked when

calling the
function being

analysed

gprof like output

16

example usage
• igprof -pp myAnalysisJob myArgs

profiles performances

• igprof -mp myAnalysisJob myArgs
profiles live memory allocations

• igprof -cl myAnalysisJob myArgs
leak hunter

the output is a igprof.PID xml file containing
the complete information about the profiling session.
Such information can be analysed and displayed with

igprof-analyse igprof.PID

17

Success stories

• It has been successfully used to improve CMS
simulation and reconstruction software.
It allowed to spot easily (for example):

• a 180Mb/1000 events leak in ORCA muon
code

• a 20Mb/1000 events leak in ORCA tracker
code

18

Future plans

• Improve the analysis tool

• Proper MacOS X support

• Support for Monalisa (?)

