
IgProf profiling tool

G. Eulisse, L. A. Tuura
Northeastern University, Boston, USA

Abstract

A fundamental part of software development is to de-
tect and analyse weak spots of the programs to guide opti-
misation efforts. valgrind and oprofile are two excellent
tools that provide developers detailed information about
their programs. However they still leave holes to be filled.
IgProf is a new flexible debugging and profiling tool that
can analyse large and complex applications.

IgProf has three main components: a core profiler built
on top of a generic event collector and dynamic function
instrumentation tool, a number of profiling modules, and a
utility to analyse the gathered data. This article describes
the profiler’s features, output and implementation.

INTRODUCTION

Three typical programming problems, immediately af-
ter being unable to compile or run the program in the first
place, are:it’s too slow, andit uses too much memory, and
it’s both too slowand uses more memory than any realistic
machine has.The obvious solutions of buying a faster com-
puter, more memory, or a faster computer with more mem-
ory often yield only limited and passing relief: the capacity
of programmers to consume resources frequently exceeds
not only the supply but also the growth of the supply of
those resources. The present shortage of well-established
enemy nations and lavish government grants has caused ad-
ditional funding shortfalls.

The developer is therefore faced with a major ordeal: de-
bugging and optimising the code.

Profiling

Optimization and debugging are tedious work to be
done; some even report it to be impossible.1 To ease this
painful task a number of tools have been developed and
new ones are being continuously written. To name just a
few, gdb, valgrind andoprofile, cover a large spectrum of
what is generally needed to debug and profile our code.

It is crucial to have excellent profiling tools in order for
a developer to be able to focus on real, not imagined prob-
lems. It is not worth optimising a piece of code which only
takes 1% of the execution time or memory if some other
part consumes 35% of them. It is important that the tools

1Bruce Leverett is reported to have written in “Register Allocation in
Optimizing Compilers”: But in our enthusiasm, we could not resist a radi-
cal overhaul of the system, in which all of its major weaknesses have been
exposed, analyzed, and replaced with new weaknesses.

point developers quickly and effectively to the real source
of the problems.

Profiling a program gives a quantified answer to the
question “How much does each function in this program
consume resource X?” The resource may be for exam-
ple run-time (performance profile), amount of memory al-
located (memory profile), thread locking primitives (lock
contention profile), or system resources such as file de-
scriptors. If the program should free the resources is has
acquired, such as memory, profiling can also tell where re-
sources are leaked.

A common approach to performance profiling is event
sampling: the program execution location is sampled every
once in a while, either through instrumenting the code (e.g.
at compile time), or by statistical sampling (e.g.SIGPROF

signal or non-maskable hardware interrupt). The position
within the program is recorded and stored in a data struc-
ture which may be either hierarchical or flat. Over a long
run period the distribution of these samples produces a
fairly reliable indication where most of the time was spent.

Resource profiling is in fact analogous to performance
profiling. The events to be sampled are calls from the
program to acquire and release resources, for instance to
malloc() and free() memory management functions.
The only difference is the profiler counts memory allocated
and freed, not just the number of “ticks.”

Existing Open-Source Tools

Before describing IgProf we shall briefly cover a number
of existing open-source tools. They have been an inspira-
tion in developing our own tool; we have sought to com-
plement, not duplicate their functionality. In fact IgProf
started as an attempt to improve some of the existing tools.

valgrind Valgrind [7] is a memory debugger for Linux
systems. It only supports IA32 (i386-family) architecture.
At program start-up it captures the execution and runs the
program on a virtual IA32 processor. It can be used with al-
most any ELF-based executable. By simulating the whole
CPU, valgrind is able to track every memory operation and
track every bit written to and read. This information is
used to generate warnings when uninitialised values are
used, accesses outside valid memory and leaks. These days
the tool has been extended to support an impressive range
of “skins” from cache performance analysis to discovering
synchronisation race conditions.



oprofile Oprofile [6] is a kernel level profiling facility.
It uses debugging event registers that exist on most modern
CPUs; when a predetermined count of events is exceeded,
the CPU generates a non-maskable interrupt. Oprofile ker-
nel module records in which program and where in that
program the event occurred. By sampling the system and
the programs for a while a fairly accurate profile is gener-
ated. The choice of events that can be monitored is very
rich on modern CPUs and includes a variety of hardware-
level details.

jprof jprof [10] is a small performance profiler devel-
oped by the Mozilla [9] project to allow the browser to
be profiled by itself. It uses standardSIGPROF signals
for sampling and can be injected into programs with the
LD_PRELOAD mechanism, thus requiring no instrumenta-
tion.

Requirements for a profiling tool

As a memory debugger, valgrind does an excellent job
in finding memory leaks and general memory errors. It can
however be too slow for computationally intensive appli-
cations and while there are plans to provide quantitave in-
formation on memory usage and allocations, these are un-
available at this time. Moreover, it is only available for
x86 systems and limited to the instruction set present in the
emulation. Oprofile currently lacks a hierarchical profile
data view and requires administrative privileges to enable
the profiler. This in practise prevents profiling on comput-
ing farms as farm administrators rarely allow non-standard
kernel extensions to be loaded. Jprof as completely unin-
trusive profiler is better suited for farms, but lacks many
features we would like to have; IgProf grew out from ex-
tending and rewriting jprof. Here it is our list for the “most
wanted” features of our “ultimate profiling utility”

• “Fast enough to profile large software systems used by
LHC experiments”

• “Capable of dealing with threads, shared libraries and
dynamic loading”

• “Unintrusive: no compile- or link-time instrumenta-
tion”

• “Very easy to use, robust”

• “Profiler itself must not skew profile data”

• “Able to profile performance, both real-time and
process-time”

• “Able to profile memory usage”

• “Fast resource leak detection”

• “Must generate both flat and call-tree profiles”

• “Extensible to allow new types of events to be sam-
pled”

Most of the low level features needed to gather such
debugging/profiling information are already present in the
system libraries such asglibc. What is left for the pro-
filer itself, at least to the first order of approximation, is
gathering profiling events, tracking them in an optimised
structure at run-time and producing nice output that is easy
enough to interpret and navigate. This is how howIgProf,
the ignominous profiler, was born.

General structure of the profiler

The IgProf profiler is injected into the target program
normally as an auxiliary library at program start-up time.
The core profiler provides services to observe and track
profiling “events” plus all the infrastructure to track thread
creation and exit and to output the profile data at program
exit. The profiling events include a stack trace at the point
the event occurred plus some event-specific data. An event
can be a point in time or mark a time-span. In the latter case
the event is made of two parts: a start and end notification.

Once the profiler is attached to the program, the selected
profiler modules are activated. The modules define which
events are gathered and usually depend on the options de-
fined by the user: memory allocations and deallocations,
timer interrupts, instrumented calls and so on. Each mod-
ule activates, handles and filters its own events, using the
core services. Typical event captures the current call stack
and inserts an event into a compact tree that accumulates
the results.

We use the compact accumulating tree to avoid track-
ing every single event in full detail. It is sufficient for
profiling instantaneous events such as bytes allocated by
a function or number of hits in performance sampling. Ad-
ditional “live” resource tables are used when tracking leaks
or maximum live resource usage. These hashed resource
tables track events that have started but not yet ended, for
instance aftermalloc() was called to allocate memory
and beforefree() was called to release it. When the end
event occurs, the accumulated tree is adjusted accordingly.
When the program ends, entries left in the resource tables
are leaks. Other profiling tools can be used for more pre-
cise performance sampling when aggregated results are not
enough.

IGPROF WORKFLOW

The IgProf user interface is very similar to valgrind: user
runs the program withigprof prepended to the command
line. The command is actually a wrapper script that forces
the profiler to be injected to the target program and to ac-
tivate before the target program gets to execute. The pro-
filer does its instrumentation on the target program, for in-
stance for memory profiling instruments themalloc() and
free() functions, and then lets the program execute nor-
mally. When the instrumented functions are called or for
instance SIGPROF signal is generated, a profiling event is
generated and the profiling core gets informed about it. The
information about the position at which the event occurred



is saved in a tree like structure. When the program exits the
profiling information are dumped to the disc in the form of
an XML file. At this point an external utility can be used
to transform this rawtrace XML file to a more significant
layout. In the IgProf package we provide a simple utility
“igprof-analyse” that allows to convert the XML file into a
gprof like output file.

Hooking mechanism

IgProf uses dynamic hooking to instrument the target
program. That is, instead of overriding dynamic linker
symbols for the functions to be instrumented, IgProf looks
up the original functions at run-time and replaces the func-
tion prologue with a jump to a profiling trampoline. The
trampoline has two parts: a jump to the instrumentation
hook, and copy of the original function prologue. Hence
any call to the original function will end up directly in the
hook function. The hook function typically then calls the
original function by calling the second part of the tram-
poline, which executes the copied original prologue and
then jumps into the next instruction in the original function.
This technique was originally described in [1] and similar
technique is used in a number of projects [2, 3, 4, 5].

This mechanism allows IgProf to decide at run-time
which functions should be instrumented, and to do so rel-
atively independent of dynamic linker and system library
versions. There is no danger of hook function clashes and
inadvertent recursion. The hook function has complete ac-
cess to the parameters and return value of the instrumented
function. Obviously there are uses of the hooking mech-
anism beyond purely profiling, and hence we provide the
code in a separate IgHook package.

Possible Measurements

IgProf can currently profile performance (-pp option),
memory usage (-mp) and file descriptor usage (-fd). The
memory profiler can track the total amount of memory al-
located, the largest block of memory allocated, the amount
of live memory left at exit, and the maximum live memory
at any point. In leak check mode (-cl) all live blocks at the
end are reported, with the live memory at the end counts in-
dicating how much each function leaked memory. The file
descriptor profiler can track the number of file descriptors
used, live descriptors at exit (leaks), and maximum number
of live descriptors at any point.

Any number of these profiles can be enabled
simultaneously—it is perfectly viable to enable all of
them at once. This is particularly useful if the program
is very large and takes a long time to run, for instance
several hours or days. Enabling more than one profiler
module of course introduces some skew as each profiler
consume resources themselves. The core profiler disables
all accounting while within any profiler modules, so the
effect is minimal, but it still happens that the performance
profiler generates hits on other modules.

Interpreting the Results

Once filtered withigrof-analyse IgProf output re-
sembles that of gprof so its output conventions documenta-
tion may be helpful to read first [8].

The following explanation assumes memory leak check-
ing. In the case of measuring something else, the expla-
nation has to be adjusted correspondingly for CPU time or
memory allocated. The output format is the same, just the
meaning of the numbers is different.

The result file is made of sections like shown in Figure .
Each section describes the statistics for one function,

the primary function, surrounded by secondary functions.
Above the primary function are the callers: the func-
tions that called the primary function. Below the pri-
mary function are the callees: the functions the pri-
mary function called. The line that begins with a brack-
eted number, here ’[0]’, indicates the primary function;
the number in the brackets indicates the function’s in-
dex in the statistics. The smaller the index is, the higher
the function was in cpu time usage, memory usage or
leakage. The next columns are the statistics explained
in more detail below. The first text column tells the
name of the function, here JetFinderEcalPlusHcalTowerIn-
put::prepareInput(RecEvent const*), followed by the name
of the module where it was found, here writeDST. The
callers and callees give the index of the function after the
module name, such as the ’[952]’ and ’[732]’ in the first
two callees here, to help in navigating in the output.

For the primary function line the first statistic is the sum
of the memory leaked by the function and all its callees,
here 50642044. The second statistic is the amount of mem-
ory leaked directly by the function itself, here 50226044.
So in this case we can already see that most of the memory
was leaked by the function itself. The third statistic is the
number of unique call paths that resulted in a leak, here 5.
Note that this is not the number of calls that resulted in a
leak, but the number of unique call paths: there were five
different calls stacks with this function in the stack. There
could have been thousands of such calls.

For the secondary functions the statistics are slightly dif-
ferent. The first statistic is the total amount of memory the
function leaked in any call path. The second statistic is the
amount leaked when the primary function was also in the
call stack. For callers this is the amount of memory the
caller leaked through the primary function. For callees it is
the amount the primary function leaked through that callee.
So the second number is always less than the first one. The
third number pair is first the number of calls paths includ-
ing the primary function, and then total number of calls to
the function.

RESULTS

IgProf has been used in a number of cases to spot mem-
ory and performance issues of CMS recontruction soft-
ware. It has been expecially important in the phase pre-
ceeding CMS DC04 to tune the DST writing software and



53553180 50642044 5/5 PersistentJetFinder::reconstruct() (.../ORCA_8_0_1_pre1/lib/...)

[0] 50642044 50226044 5 JetFinderEcalPlusHcalTowerInput::prepareInput(RecEvent const*) (...)

5863168 0 5/62 BaseRecItr::BaseRecItr[not-in-charge](RecoQuery const&) (writeDST) [952]

229962815 0 5/49 LazyObserver<RecEvent const*, int>::check() const (writeDST) [732]

36864 0 5/14 std::vector<VJetableObject*, std::... >::_M_insert_aux(...

0 0 5/5 JetableObject<EcalPlusHcalTower>::JetableObject[in-charge](...) (...)

62299760 416000 5/547 RecQuery::operator RecConfig const&() const (.../COBRA_7_7_1_...)

Figure 1: Sample igprof-analyse output

remove two big memory leaks that would have seriously
compromised the ability to run the DST production as fore-
casted. In particular a 180Mb per 1000 events leak in the
muon code and a 20Mb/1000 events one in the tracker code
have been exposed and fixed thanks to it.

CONCLUSION

IgProf has been proven to be a useful tool to improve
the quality of CMS simulation and reconstruction software.
The profiling core is stable, reliable and fast enough to pro-
file programs requiring even 500Mb of RAM. A number
of weak spots have been found easily and fixed thanks to
it, expecially for what concerns memory leaks. We look
forward in trying to continue improving the user frontend
which is currently the real weak spot of the profiling pro-
cess.

ACKNOWLEDGEMENTS

This work is supported by NSF.

REFERENCES

[1] Jeffrey Richter, “Load Your 32-bit DLL into Another Pro-
cess’s Address Space Using INJLIB”, Windows System Jour-
nal, Vol 9 No 5, May 1994.

[2] Shaun Clowes, “injectso: Modifying and Spy-
ing on Running Processes Under Linux and So-
laris”, The Black Hat Briefings, 2001, Amsterdam,
http://www.blackhat.com/html/bh-europe-01/bh-europe-
01-speakers.html#Shaun, http://www.securereality.com.au/

[3] “DynInst: An Application Program Interface (API) for Run-
time Code Generation”, http://www.dyninst.org/

[4] http://rentzsch.com/machinject/

[5] http://rentzsch.com/machoverride/

[6] http://oprofile.sourceforge.net

[7] http://valgrind.kde.org

[8] http://www.gnu.org/software/binutils/manual/gprof-
2.9.1/htmlnode/gprof10.html

[9] http://www.mozilla.org

[10] http://www.mozilla.org/performance/jprof.html


