
USE OF CONDOR AND GLOW FOR CMS SIMULATION PRODUCTION

D. Bradley, S. Dasu, M. Livny, V. Puttabuddhi, S. Rader, W.H. Smith

University of Wisconsin, WI 53706, USA

Abstract
The University of Wisconsin distributed computing
research groups developed a software system called
Condor for high throughput computing using commodity
hardware. Condor allows building an enterprise level grid.
Several UW departments have Condor computing pools
that are integrated in such a way as to flock jobs from one
pool to another where resources may be available. An
interdisciplinary team of UW researchers recently built a
new distributed computing facility, the Grid Laboratory
of Wisconsin (GLOW) forming a new pool for campus
research computing. We have built a scalable job
submission and tracking system called Jug using Python
and mySQL that enabled us to scale to run hundreds of
jobs simultaneously. Jug also ensured that the data
generated is transferred to US Tier-I center at Fermilab.
In this paper we discuss our experience and observations
regarding the use of opportunistic resources at UW for
CMS simulation production in the past year.

INTRODUCTION
The Large Hadron Collider (LHC), which is under

construction at the CERN laboratory, is designed to
definitively explore the higgs sector and the electro-weak
symmetry breaking mechanism (EWSB). The LHC will
collide protons on protons, at 14-TeV center of mass
energy, at high luminosities. The Standard Model
processes and any new physics phenomena that may be
responsible for EWSB, e.g. Super Symmetry (SUSY),
will be studied in the resultant TeV scale parton-parton
interactions observed by the CMS detector [1], which is
also under construction now. Unfortunately, both the rate
of the strong interaction physics at electro-weak scale,
and per event hadron mulitiplicity are very large. At
design luminosity, an average of 17 collisions occur for
each 25 ns crossing time, leading CMS to witness a
billion proton-proton interactions per second. The LHC
events have an average charge particle multiplicity of
about 1000. Extraction of signals, particularly those of the
higgs decays, from the profusely produced Standard
Model background requires exploration of low branching
fraction leptonic or photonic modes with good energy
resolution. Therefore, CMS is designed with good
resolution and high degree of segmentation, and is
capable of withstanding a very high rate environment.
The trigger and event filter farm discard the well
understood background, while retaining the interesting
high energy physics of 1-MB events at the rate of 100 Hz.
Simulations of physics events, both signal and QCD
background are critical not only to characterize the

physics performance of the detector and trigger systems,
but also for the preparation of sophisticated reconstruction
software and analysis tools. To that end, CMS has set
itself a challenge to produce 50 million events in Fall
2003 and reconstruct them at the rate of 25 Hz during
Spring 2004 [2]. This challenge required far more CPU
power than is available at CERN. Collaborating CMS
institutions from around the world were invited to help in
this simulation production. Our group at University of
Wisconsin has taken this challenge to use our facilities to
produce data for CMS. These data are available to all
CMS physicists including our group.

CONDOR
The Condor Project [3] at the University of Wisconsin

developed, implemented, and deployed, mechanisms and
policies that support High Throughput Computing on
large collections of distributively owned commodity-
computing resources. The Condor software provides a
specialized workload management system for compute-
intensive jobs. Like other full-featured batch systems,
Condor provides a job queueing mechanism, scheduling
policy, priority scheme, resource monitoring, and
resource management.

 While providing functionality similar to that of a more
traditional batch queueing system, Condor's novel
architecture allows it to succeed in areas where traditional
scheduling systems fail. Its unique mechanisms enable
Condor to effectively harness wasted CPU power from
idle resources, e.g., when a particular research group is
otherwise busy and not using its resources, Condor can
flock jobs from other research groups to it. Condor can
preempt the lower priority jobs when a higher priority
(e.g., owner's job) is submitted. Upon preemption, Condor
is able to transparently produce a checkpoint and migrate
a job to a different machine when it becomes available if
compiled specially with Condor provided system software
libraries (The Standard Universe). For normal jobs,
Condor reruns the job automatically (The Vanilla
Universe) until it completes successfully or terminates
due to user code errors. Jobs that are able to resume
processing where left off at the time of preemption, i.e.,
user level checkpointing, can use the resources very
efficiently by integrating run periods that are shorter than
the complete job.

Further, Condor does not require a shared file system
across machines - if no shared file system is available,
Condor can transfer the job's data files on behalf of the
user, or Condor may be able to transparently redirect all
the job's I/O requests back to the submit machine. As a

result, Condor can be used to seamlessly combine all of
an organization's computational power into one resource.

Condor provides an extremely flexible and expressive
framework for matching resource requests (jobs) with
resource offers (machines). Jobs can easily state both job
requirements and job preferences. Likewise, machines
can specify requirements and preferences about the jobs
they are willing to run. These requirements and
preferences can be described in powerful expressions,
resulting in Condor's adaptation to nearly any desired
policy. Condor also implements a mechanism to chain a
group of jobs using a Directed Acyclic Graph (DAGman)
[4]. DAGman ensures that previous stages of jobs are
completed before proceed to the next.

Condor can be used to build Grid-style computing
environments that cross administrative boundaries.
Condor's "flocking" technology allows multiple Condor
compute installations to work together. Condor
incorporates many of the emerging Grid-based computing
methodologies and protocols. For instance, Condor-G [5]
is fully interoperable with resources managed by Globus
[6]. Although we only describe our work with pure
Condor here, we have also integrated our resources in US
Grid3 [7] effort.

CONDOR & GLOW RESOURCES
There are several Condor pools on the UW campus.

The largest of those is operated by the Department of
Computer Science with about 800 1 GHz Intel Pentium-
III processors. The High Energy Physics group has about
100 CPUs, bulk of which are 2.4 GHz Intel Xeon
processors. The Grid Laboratory of Wisconsin (GLOW)
[8] is a new inter-departmental research computing
initiative with about 800 2.8 GHz Intel Xeon processors
being commissioned. These facilities are jointly owned by
High Energy Physics (CMS), Astrophysics (IceCube),
Medical Physics, Chemical Engineering and
Biochemistry research groups. The racks of computers
located in these departments are connected using a 1 Gbps
campus network backbone. Additional Condor pools
from other research groups can be included in this project.
We have used the Condor software to configure these
pools such that jobs submitted from the High Energy
Physics resources are seamlessly flocked to any available
resource on the campus. Therefore, in addition to our
dedicated resources we have access over a thousand
CPUs currently scaling to twice that within a year.

In order to utilize this large CPU power effectively we
have also assembled a storage facility for HEP group with
an aggregate of about 12 TB RAID5 disk. The GLOW
project will increase the storage capacity to about 70 TB.

CMS APPLICATIONS
The CMS event simulation involved multiple steps;

physics simulation (CMKIN [9]), detector simulation
(CMSIM [10] or OSCAR [11]) and electronics signal
simulation (ORCA [12]). The FORTRAN GEANT3 [13]
based CMSIM program was replaced with C++ GEANT4

[14] based OSCAR program partway through this event
production challenge.

The CMKIN and CMSIM programs could be compiled
with special Condor libraries and are capable of running
in the Standard Universe. The OSCAR and ORCA
programs use multi-threading and dynamic libraries and
are capable of running in the Vanilla Universe only. At
the time of this effort the OSCAR and ORCA programs
were not able to self check-point their progress, and are
required to restart from the very first event upon
preemption.

The simulation consisted of several physics datasets
comprising of hundreds of thousands of events each. Each
dataset was divided into bunches of events termed as
assignments which are handed to various computing sites
participating in the production. The assignments are
further broken into jobs of the size of few hundred events
each. Depending on the dataset type and the stage of
processing and the machines selected to run the jobs, they
can last from an hour to several days each. Often the job
running also involved staging in data for input and staging
out data after completion over the wide area network.
Recovering from job transfer failures and ensuring
integrity of the data transferred posed a non-trivial
additional burden.

JUG
Managing hundreds of jobs simultaneously keeping the

integrity of several steps required an automated tool.
Therefore, we developed software called Jug [15] in
Python, to run on top of any underlying batch system, in
our case Condor. The object-oriented scripting provided
by Python was especially suited for rapid development.
Jug used a MySQL [16] database to keep track of a
chained bunch of jobs persistently. New stages of
processing could be added dynamically if needed. Jug
essentially provided a persistent DAG. The usage of the
database was especially important because we could
restart essentially any component of the system without
causing complete shutdown of processing. Jug uses
Master-Worker paradigm to delegate either data stage-in,
processing or data stage-out to storage and processing
workers. The number of storage and processing workers
could be scaled as needed. The storage workers used
Stork and grid-ftp to transfer data to FNAL
dCache/Enstore [17] facility. The processing workers
submitted jobs to Condor. The jobs submitted to Condor
flocked to HEP, CS or GLOW Condor pools. Jug ensured
that jobs progressed to the next stage only upon
successful completion of the previous stage. Failed jobs
moved to the rear of the job queue so that pathologically
persistent failures do not stall the system usage. The
operator could attend to those failed jobs at a convenient
time.

RESULTS

By exploiting special features of Condor such as check-
pointing and remote IO we have generated over 9 million
fully simulated CMSIM events, which is about a quarter
of all the data produced by CMS groups at that time. We
were able to harness about 260 CPU-days per day for a
period of 2 months over the operational period of late fall
2003. We have used 500 CPUs concurrently when
opportunity arose to exploit unused resources in
laboratories on our campus. At that time GLOW facility
was not yet commissioned. The checkpoint capability of
CMSIM was especially important at this time to
opportunistically use the facilities belonging to CS
department.

We changed to use OSCAR for detector simulation and
ORCA for electronics simulation in December 2003.
Unfortunately, check-pointing of OSCAR and ORCA was
not feasible at that time. Therefore, we were forced to
accept large job failure rate due to preemption on non-
owned resources. We also suffered from difficulties in
data transfer. Jug was especially important to track the
jobs to successful completion. In spite of these difficulties
we were able to produce 1 million OSCAR events in time
for April 2004 CMS data challenge at CERN. Since then,
we are using both Condor and GLOW to produce data for
CMS and local use. We have produced over 3 million
OSCAR events and 6 million ORCA events. ORCA
production required installation and commissioning of
dCache storage management system.

In summary, during the past year our contribution to the
CMS data production challenges is one of the largest.
More importantly we were able to accomplish this with
minimal investment from CMS funds by exploiting
resources opportunistically. Development of Jug allowed
us to minimize the personnel effort devoted to production
management.
With the expertise gained from our production efforts,
especially in dCache usage, we have adapted our
environment to provide analysis resources. We are able to
run about a 100 analysis jobs simultaneously using
dCache served from about 12 storage pools.

CONCLUSIONS
From our experience with the use of Condor and

GLOW shared computing resources on the UW campus
we conclude that:

• Condor software allows us to build and efficiently
use computer pools that are shared by groups
across a campus.

• Pooling resources together allows all groups to
benefit. Because there are idle resources in one or
the other pool at any time, it provides every group
an opportunity to exploit more than their fair
share. The aggregate usage efficiency is very high.

• Groups with robust, checkpointable software gain
the most. This is especially suitable for high
energy physics simulations which can run in the
background and exploit idle resources.

• By combining resources on campus, small
research groups can use idle resources in
collaborating pools opportunistically.

• With appropriate agreements of priority and burst
utilization policies, a group can command large
level of resources that are usually available only at
national laboratories

We believe that implementation of shared computing
facilities such as GLOW will ultimately lead to
democratization of computing access. This will present an
opportunity for scientists at Universities to test their
innovative ideas promptly.

ACKNOWLEDGEMENTS
This work is supported by the US National Science

Foundation, the US Department of Energy and the
Wisconsin Alumni Research Foundation.

REFERENCES
[1] http://cmsinfo.cern.ch
[2] David Stickland, Plenary Talk, These Proceedings.
[3] http://www.cs.wisc.edu/condor
[4] http://www.cs.wisc.edu/condor/dagman/
[5] http://www.cs.wisc.edu/condor/condor-g/
[6] http://www.globus.org/
[7] http://www.ivdgl.org/grid3/
[8] http://www.cs.wisc.edu/condor/glow
[9] http://cmsdoc.cern.ch/cms/generators/
[10] http://cmsdoc.cern.ch/cmsim/cmsim.html
[11] http://cmsdoc.cern.ch/oscar/
[12] http://cmsdoc.cern.ch/orca/
[13] http://wwwasdoc.web.cern.ch/wwwasdoc/

geantold/GEANTMAIN.html
[14] http://wwwasd.web.cern.ch/wwwasd/geant4/
[15] http://www.hep.wisc.edu/cgi-bin/cms/
JugMaster.cgi/doc/index.html
[16] http://www.mysql.org
[17] http://www.dcache.org

