
BEYOND PERSISTENCE: DEVELOPMENTS AND DIRECTIONS IN
ATLAS DATA MANAGEMENT

D. Malon*, Argonne National Laboratory, Argonne, IL 60439, USA

A. Schaffer, LAL, Orsay, France

Abstract
 As ATLAS begins validation of its computing model in
2004, requirements imposed upon ATLAS data
management software move well beyond simple
persistence, and beyond the "read a file, write a file"
operational model that has sufficed for most simulation
production. New functionality is required to support the
ATLAS Tier 0 model, and to support deployment in a
globally distributed environment in which the
preponderance of computing resources—not only CPU
cycles but data services as well—reside outside the host
laboratory. This paper takes an architectural perspective
in describing new developments in ATLAS data
management software, including the ATLAS event-level
metadata system and related infrastructure, and the
mediation services that allow one to distinguish writing
from registration and selection from retrieval, in a manner
that is consistent both for event data and for time-varying
conditions. The ever-broader role of databases and
catalogs, and issues related to the distributed deployment
thereof, are also addressed.

INTRODUCTION
ATLAS data management software has been deployed

at multi-terabyte scales in recent years, but a 2004 data
challenge (Data Challenge 2) provides the first real test of
many of its capabilities. In earlier deployments, it
sufficed to support a “file in, file out” model of
processing: generate files of events, simulate them,
superpose pileup events, digitize them, reconstruct them,
and analyze them. The basic processing pattern was to
iterate over the input events in a file, process them, and
write the results into a new file. In Data Challenge 2,
ATLAS will mix event streams to produce samples that
resemble what is expected to come off of the detector via
the high level trigger, and will exercise the processing
chain planned for the Tier 0 center at CERN to build
Event Summary Data (ESD), Analysis Object Data
(AOD), and TAG databases to support event selection.
These data will be distributed to remote sites for analysis
in a manner consistent with the proposed ATLAS
computing model.

New (or newly utilized) capabilities include support for
multiple, possibly overlapping output streams, support for
collection building using registration services, and back
navigation with policy control.

A great deal of effort has gone into articulation and
refinement of the ATLAS event model and into its
persistification, which is still limited by the capabilities of
the primary technologies upon which the ATLAS event
store will be based: the LHC Computing Grid (LCG)
Project’s common persistence infrastructure POOL [1],
and the ROOT [2] software upon which POOL’s file-
based storage relies. The associated difficulties in
persistification and how they have been addressed are
beyond the scope and size limitations of this paper.

STREAMS AND COLLECTIONS

First-pass reconstruction processing will divide output

events into multiple streams. While the database software
imposes no restrictions on the number of streams, on
whether streams may overlap, and on stream-specific
specification of event data content, the Data Challenge 2
model is that the numbers of streams is small (~10), that
streams are disjoint, and that streams share the same
content definition. This choice may be revisited after the
data challenge, but the rationale is that unless one can
provide reassurance that no one in the ~2000-person
collaboration will want to analyze samples that cross
stream boundaries, this is the safest strategy: otherwise, a
cross-stream sample would find certain data available for
some events and not for others, depending upon the
stream from which the events were extracted, and one
would need safeguards against the very real possibility of
processing the same event multiple times.

In this model, streams serve principally as physical
clustering optimizations—they are not necessarily the
units of input to physics analyses. The latter is the role of
collections. The idea is that, while first-pass
reconstruction will write events exactly once, references
to those events will be recorded in as many physics
collections (event lists, really) as might want them, along
with associated metadata (“tag” data) to support more
detailed event selection. Higgs candidate events, for
example, might not get their own stream, but they would
almost certainly get their own collection; moreover, one
could imagine two very similar samples, differing only in
their cuts, being instantiated as two different collections,
but not as two different streams.

*Work supported in part by the US Department of Energy, Division of
High Energy Physics, under Contract W-31-109-ENG-38

WRITING AND REGISTRATION
The distinction between writing and registration is an

architectural motif that is increasing in prominence in the
ATLAS data management framework: there is a
difference between storing an object and remembering
where you put it. When phrased this way, the distinction
may appear obvious, but a great deal of work may be
done—and indeed has been done by many experiments—
without ever formalizing the difference. In simulation
production and analysis, for example, one reads all the
events in a generator file and writes all the events into a
hits file, or reads a file of digitized events and writes a file
of reconstructed events. Except for remembering the file
names, one does not need to record where individual
events have been stored. The only registration happens at
the file cataloguing level.

The same phenomenon may be observed in many
conditions database products [3, 4], in which one often
cannot write a conditions object without assigning it an
interval of validity. An ATLAS design contribution (and
an ATLAS requirement) to the LCG common project on
conditions data management has been the architectural
separation of payload storage from registration in a
temporal database.

The ATLAS control framework (Athena) endeavors to
provide a consistent view of writing and registration
processes for all kinds of data. In Athena, “outstreams”
are used to control the writing of data objects. When an
object is written, a token, opaque to the user, is returned.
On input, this token is used by persistence services to
locate and return the object of interest.

The ATLAS control framework supports the notion of
registration services, wherein one can record an object’s
token, along with optional metadata that may later be
used to help decide which objects are of interest. The
registration model is the same for event and non-event
data: only the concrete type of the registration service
changes. For event data, event collections, currently
based upon POOL collections, provide the repository in
which registration information is retained. This is how
ATLAS tag databases are constructed: users record
references to events, along with metadata that might be
used for later event selection. For conditions and
calibration data, a temporal database serves as the
registration service, recording references to the data,
along with associated metadata—in this case, an interval
of validity, a folder name (used to organize conditions
data types), a tag, and so on—but the registration motif
remains the same. (As an implementation optimization,
one may choose to store conditions data on the same
server, and even in the same database, as the temporal
database that mediates access, but the architectural
distinction between writing and registration, and between
payload and metadata, remains.)

COLLECTIONS IN PRACTICE
If the collections model is successful, event collections

will permeate the ATLAS analysis environment. A
simplified scenario for event selection might be:

• Query collection-level metadata in a collection or
dataset catalog to identify a collection of interest;

• Apply a filter predicate (query) to the collection to
build a list of events of interest—the result is
another collection;

• Extract the list of unique file ids from the resulting
event list, to give to grid resource brokers for
resource acquisition and scheduling;

• Move the collection of selected events (file-
resident) into the job sandbox as input to the
analysis—the job will iterate over these events and
no others.

Note that this is an oversimplification, in that the

resulting collection would, if large, be partitioned on file
boundaries, and multiple jobs corresponding to the input
partitioning would be submitted to analyze the sample,
with an output concatenation step at the end. Work is in
progress along these lines in the ATLAS Distributed
Analysis (ADA) project.

For Data Challenge 2, ATLAS has deployed the
utilities to extract into a file the references to qualifying
events as the output of a query, and to build the list of
unique file ids needed by a grid resource broker.
Additional utilities to build tailored samples with specific
content have also been delivered, e.g., to extract into a
physicist’s personal files the ESD, say, for all events that
satisfy a given query to the TAG database.

BACK NAVIGATION
We use the term back navigation to refer generically to

the machinery to support retrieval of data produced in
earlier processing stages, e.g., the ability of a reader of
AOD to retrieve data in ESD, or even RAW or MC
TRUTH data objects. In the ATLAS framework, there
are two mechanisms by which back navigation might be
accomplished. The first is by following direct references
between data objects. In this case, the store is agnostic to
processing stages, and simply follows the persistent
pointers, assuming that data are locatable. The second
mechanism is by “name” (in ATLAS, this is by data type
and user-assigned key): a physicist may attempt to
retrieve by name from the transient store any object that
was saved in earlier processing stages. Data lookup and
delivery is by recursive delegation: the input event
(AOD, say) is asked whether it can deliver an object with
that name; if not, it asks its parent (ESD) the same
question, and so on until the object is found or the
upstream data stages are exhausted.

While the database software supports arbitrary back
navigation, the framework also delivers “policy hooks” to
allow control (including depth control) of back
navigation. In the ATLAS computing model, it is likely
that back navigation from AOD to ESD, while

theoretically possible anywhere, will be routinely
supported at Tier 1 centers, which host both AOD and
ESD, but will be unsupported or costly at sites that locally
host only AOD (e.g., at Tier 2 centers and beyond).

A component strongly related to back navigation
support is provenance management. Each persistified
event retains a reference to its parent. When one
produces ESD from RAW and AOD from ESD, the
provenance is obvious, but what happens when
RAW ESD AOD is accomplished in a single job via
concatenation? Additional machinery is required to
ensure in this case that ESD and AOD do not both believe
they are the daughters of the RAW input event, and
instead to ensure that AOD “knows” that ESD is not its
sister, but its mother. .

ON SIMPLE PERSISTENCE

In the early stages of a software project, simple

persistence is a boon. Developers appreciate the ability to
write their objects (or, more accurately, their object states)
and read them back later, without worrying about schema,
transient-to-persistent conversion, and persistent data
organization. Such a capability may speed development,
but it comes at a cost: the persistent store, rather than
having an explicit design, is built, de facto, of snapshots
of the transient data model at the time that data producers
finish execution, and a reader’s view of the data must be
the writer’s view.

Object orientation in some ways exacerbates this
potential problem. With ntuples, one can in principle
retrieve only the attributes of interest to an analysis,
whereas object persistence mechanisms in general allow
one only to retrieve and rebuild in their entireties objects
as they were written, not to gather selected (usually
private) attributes from a variety of objects and
reconstitute them into a new object.

Relational databases usually do better than this: one
can write tables with a great many columns, and, via a
query, extract exactly the columns one needs. With a
typical object persistence infrastructure, one cannot write
FullTracks and retrieve ParameterizedTracks; one must
first retrieve sufficient data to rebuild FullTracks, and
only then project them onto ParameterizedTracks.

Many developers expect that schema evolution will
help them manage a collaboration’s evolving view of its
data, and it may. The LCG POOL project will deliver
some schema evolution support in Release 2.0, based
upon ROOT 4’s schema evolution capabilities. Such
capabilities may handle simple cases (addition or removal
of a data member; data member type changes), but more
substantial refactoring of an experiment’s event model—
even alterations as natural as adding association objects
rather than relying upon direct pointers—will require
substantially more than schema evolution is likely to
provide.

An object persistence infrastructure tends to be
ambiguous in many areas, especially those related to

object identity, equivalence, and substitutability: If I
write an object state, then copy it to a different location, is
it the same object, is it different but substitutable for the
original, and how do I find it? If I instead write the object
twice (for example, to two different streams), are the two
instances equivalent, and how do I know? Are these
answers different if the state of the transient object
changes between writes, and how is this managed?

BEYOND PERSISTENCE

To move beyond simple persistence, several

developments are required. The ATLAS software
supports separation of transient and persistent type
identification, so that, in principle, one can deliver a
system that, on input, asks, “Can I build a transient object
of type A from the a persistent state object with shape B,”
rather than exclusively restoring As from As and Bs from
Bs. The LCG POOL infrastructure, in response to
ATLAS requirements recorded in the Requirements
Technical Assessment Group (RTAG) report that served
as the charter for POOL, provides hooks to make this task
easier, but they have not been utilized by any experiment
to date. Such capabilities will be essential to support
reader’s views that are not writer’s views, and to support
the kind of event store evolution that one must anticipate
for long-lifetime experiments such as ATLAS.

A multi-petabyte event store will require a
sophisticated metadata infrastructure and navigation
machinery to ensure that data of interest can be efficiently
identified, located, and accessed. ATLAS has begun to
deploy such an infrastructure; its 2004 data challenge will
provide early feedback regarding the viability of the
proposed ATLAS event store design.

ACKNOWLEDGEMENTS
The submitted manuscript has been created by The

University of Chicago as Operator of Argonne National
Laboratory ("Argonne"). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under
Contract No. W-31-109-Eng-38. The U.S. Government
retains for itself, and others acting on its behalf, a paid-up
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute
copies to the public, and perform publicly and display
publicly, by or on behalf of the Government.

REFERENCES
[1] http://pool.cern.ch.
[2] http://root.cern.ch.
[3] http://lcgapp.cern.ch/project/CondDB.
[4] http://kdataserv.fis.fc.ul.pt/ATLAS/#CondDB.
[5] D. Malon, “What Your Next Experiment’s Data

Might Look Like: Event stores in the LHC Era,”
Proceedings of the Meeting of the Division of
Particles and Fields of the American Physical Society
(DPF 2004), Riverside, CA, August 2004, to appear.

