
THE SEAL C++ REFLECTION SYSTEM

S. Roiser∗, P. Mato†

CERN, Geneva, Switzerland

Abstract

The C++ programming language has very limited built-
in capabilities for reflection information about its types at
run-time. In this paper we present a new reflection system
for C++, which allows complete introspection of C++ types
and their use at run time. This new reflection system has
been developed in the context of the CERN/LCG/SEAL
project in collaboration with the ROOT project.

A detailed description of the new model is given fol-
lowed by an overview of the current implementation in use
by the LCG SEAL and POOL projects.

INTRODUCTION

Reflection is the ability to programmatically inspect and
use types for a given system. There are two types of reflec-
tion: compile-time and run-time. Compile-time reflection
facilitates generic programming by obtaining properties of
a specific type or relationship between types at the time the
program is compiled. An example of a compile-time re-
flection library is Boost typetraits [1]. Run-time reflection
makes use of information about the types when the pro-
gram is running without prior knowledge of it when the
program was compiled. The reflection information needs
to be obtained and stored in memory for all types of the
system which the user may want to interact with at run-
time. This is the type of reflection we are interested in this
paper. Run-time reflection information can be used by ap-
plications such as object persistency, multi-language bind-
ings, interpreters, etc.

Some programming languages include the reflection ca-
pability as part of their standard specification. Examples
of such languages are Java, C# or Python. For these lan-
guages, types are typically first class objects and therefore
users can manipulate them as any other object of the sys-
tem. The C++ language provides, on the contrary, very lim-
ited built-in reflection capabilities. Basically it is limited
to the Runtime Type Information (RTTI), which is mainly
used to specify the dynamic type of objects needed by dy-
namic cast operations and it provides also means of obtain-
ing the type names. Therefore, if we want to give reflection
functionality to C++ programs, we need somehow to ex-
tend the language. There are several approaches to extend
C++ with reflection but these approaches often have the
drawbacks of either being incorporated into a larger system
(e.g. CORBA [2]) or the need of instrumenting the source

∗ stefan.roiser@cern.ch
† pere.mato@cern.ch

code before the reflection information can be created.
A native extension of C++ with reflection information

was proposed by Bjarne Stroustrup, called eXtended Type
Information (XTI) which would have overcome the above
problems. Unfortunately there was not much development
on this topic recently.

GOALS

To overcome the mentioned shortcomings of C++, a new
reflection system for C++ within the SEAL [3, 4] project
has been developed. The goals of this reflection system
are:

• Enhancement of native C++ with full reflection capa-
bilities.

• Production of reflection information (dictionaries) in a
non intrusive way. This means that no instrumentation
of code is needed to generate the reflection informa-
tion.

• Automated production of dictionaries. As little as pos-
sible user interaction should be required.

• The dictionary code that populates the in memory rep-
resentation of the reflection information should be hu-
man readable. This shall for example ease tasks as
debugging.

• The reflection model should follow closely the latest
ISO/IEC standard for C++ [5].

• Minimal external dependencies should allow a
lightweight and standalone system. The library pro-
viding the reflection API should be compilable with-
out any external dependencies.

• Both the size of the dictionaries and the memory foot-
print of the reflection information in memory should
be as small as possible.

• It should be possible to compile the system on sev-
eral different platforms/compilers. For the LCG [6]
project the minimum requirements are for the time be-
ing Linux(redhat 7.3 [7], Scientific Linux [8] / gcc 3.2,
gcc 3.2.3), Windows (vc71), MacOSX (gcc 3.3).

THE REFLECTION MODEL

The designed reflection model (see Figure1) tries to em-
ulate the underlying model described in the C++ ISO stan-
dard as close as possible. As such, it will provide infor-
mation for all the different language entities described in
the standard (fundamental types, classes, enums, pointers,
references, namespaces, etc.)

Figure 1: Simplified class diagram of the reflection model

One particularity of the current design is the distinction
between theTypeandTypeBaseas well as betweenScope
andScopeBase. This distinction implements thestatepat-
tern, such thatTypeandScopecan be created independently
as needed before the concrete type is known and their ad-
dress in memory will not change throughout the lifetime
of a running program. This allows for an implicit forward
declaration of types and scopes such that it is always safe to
refer to aTypeand to aScopeand the creation of the reflec-
tion information order does not play a role. Only concrete
implementations ofTypeandScope(deriving fromType-
BaseandScopeBase) may change during the execution of
the program. TheClasstype has a special position in the
model as it is both a type and a scope.

As soon as a scope is defined deriving fromScopeBase
it may also have members. In the model there is a distinc-
tion betweenDataMemberandFunctionMemberthat is not
shown in the Figure. AMemberwill itself live in a given
Scopeand be of a givenType.

Types, Membersand Scopesmay havePropertiesat-
tached to them. These properties may contain informa-
tion that is not part of the standard specification. Examples
might be a class identifier or a description of a function or
class.

Classesand Functionsmight be instantiations of tem-
plated classes or functions. In order to look up a templated
type there is theTemplateFamilyclass which will allow
such operations.

EXAMPLE USE CASES

A few use cases illustrate the capabilities of the reflection
model and its proposed API (Reflexlibrary).

To enter the model, it is possible to look up a certain type
by either the string representation of the type (Listing1,

line 1-2) or itstypeid. It will also be possible to loop over
all available types. Once a type has been looked up one
may retrieve information about the type such as the size of
the type (Listing1, line 3) or check whether the type is of
a given implementation (Listing1, line 4).

1 const Type * ty =

2 Type ::byName("Particle ");

3 size_t s = ty->sizeOf ();

4 bool t = ty->isClass ();

Listing 1: Types

In case the obtainedTypeis aClass, it is possible to con-
vert to it (Listing2, line 1) and examine for instance its base
classes (Listing2, line 2). TheBasetype will provide in-
formation such as the offset between the classes or whether
the inheritance is virtual, public, protected, etc.

In addition to obtain information about aType, it is also
possible to interact with object instances. The first opera-
tion that is needed is to create and delete instances (Listing
2, line 3-4).

1 const Class * cl = ty->asClass ();

2 const Base * base = cl->base (0);

3 Object obj = cl ->construct ();

4 obj ->destruct ();

Listing 2: Classes

A Classis also aScopeand as such may containMem-
bers. The user may iterate over all the members (data mem-
ber, function member or without distinction) of aClassor
select a single one of them by providing an index (e.g. the
first one, see Listing3, line 1-2). To get or set the value of
the data member of an object, one needs to provide the ac-
tual instance as an argument to the accessor function (List-

ing 3, line 3). It is also be possible to retrieve further in-
formation such as the offset of the data member relative to
the beginning of the class (Listing3, line 4) or its name or
type.

1 const DataMember * dm =

2 cl->dataMember (0);

3 double d = *(double *) dm->get(obj);

4 size_t s2 = dm ->offset ();

Listing 3: Data Members

Function members can be retrieved in a similar way as
data members (Listing4, line 1-2). The characteristics of
the function member such as the return type (Listing4, line
3) or parameters, including types, names and default values
can be examined. If an instance of a class is available, the
function member can be invoked and the return value is
returned (Listing4, line 4).

1 const FunctionMember * fm =

2 cl->functionMember (0);

3 const Type * rt = fm->type ()->

4 asFunction ()-> returnType ();

5 void * ret = fm ->invoke(obj);

Listing 4: Function Members

PRODUCING THE REFLECTION
INFORMATION

The in memory reflection model of a running program
needs to be filled with the information corresponding to re-
quired set of classes or types. This is typically done by exe-
cuting specialized C++ code that uses the reflection model
API, in particular the build part of the API, to generate
and fill the information (Listing5). The advantage of us-
ing compiled code to fill the reflection information is that
the memory offsets to data members and pointers to func-
tions (or stub functions) can be obtained in a portable man-
ner without making any assumptions on the object memory
layout. Currently we execute this specialized code implic-
itly while loading a number of sharable libraries, each of
which is providing the reflection information for a number
of classes for a given sub-system.

1 ClassBuilder <Particle >(Particle)

2 .addDataMember <double >(m_mass ,

3 Offset(Particle ,m_mass),PRIVATE)

4 .addFunctionMember <double(void)>

5 (mass ,&stub_fun ,0,0,PUBLIC);

6 }

Listing 5: Building reflection information

The reflection model filling code is generated starting
from class or function declarations (header files) in non-
intrusive manner using the commandlcgdict(Figure2). An

invokation example of the command can be seen in List-
ing 6. This command uses internally a special front-end
to the GCC compiler, called GCCXML [9]. GCC XML
will produce an intermediate XML description of all enti-
ties contained in the header files and with a subsequent step
(a python script) will process this XML representation and
output a C++ file containing the code to fill the reflection
information. By default dictionary information for all types
contained in the input header files will be generated. If this
is not wanted aselectionXML file which contains the se-
lection criteria for the desired classes and functions may be
passed as an argument to thelcgdictcommand. The result-
ing C++ file will be compiled into a sharable library (called
dictionarylibrary).

A user may then use the reflectionReflexlibrary, the un-
modified user class library and thedictionarylibrary in dif-
ferent number of ways in a user program. The libraries may
be linked against the user main program or loaded at run-
time.

lcgdict Particle.h -s sel.xml -I./ include

Listing 6: lcgdict command

A simple example for a selection file to filter on specific
types can be seen in Listing7. The filtering can also be
done on patterns of classes or on files or patterns of files.

1 <selection >

2 <class name=’’Particle ’’/>

3 <class pattern=’’MC*’’/>

4 </selection >

Listing 7: selection file

STATUS AND OUTLOOK

The SEAL Reflection system consists of the following
packages:

• Reflex is the new reflection library implementing the
described model and API and superseeds the old li-
braries Reflection and ReflectionBuilder which are
currently in use by POOL [10] and PyLCGDict)

• lcgdict command capable producing dictionary infor-
mation for both the current and the new model.

• SealCLHEP, SealSTL, SealROOT aredictionary li-
braries for CLHEP, STL and ROOT [11] packages.

The SEAL Reflection system is currently used in:

• The LCG project for object persistency (POOL) uses
the reflection information within its storage manager.

• PyLCGDict, a Python extension module developed
within the SEAL project that provides dynamic
python bindings to any C++ class for which the re-
flection information is available. This module will be
superseded by PyReflex, which will be using the new
model.

Figure 2: Producing reflection information

Future aspects of the development of the Reflex library
are:

• Migration of the current meta classes in ROOT to use
the Reflex API

• The current ongoing work items in Reflex are:

– Provide means for memory allocation checking
– Provide STL like iterators for Types, Scopes and

Members
– Complete implementation of reflection informa-

tion for templated types and implementation of
missing Builders (Enum, Union)

CONCLUSION

The Dictionary work package of the LCG/SEAL project
provides libraries that enhance the C++ language with full
reflection capabilities. The goal of this common effort is a
common reflection system for both LCG and ROOT soft-
ware.

The design of the libraries has been done in a way to
guarantee a light and stand alone system minimizing de-
pendencies on external software. During the design phase
it was also taken care of to producing as small as possible
memory footprints and library sizes.

The reflection information is generated in an automatic
and non intrusive way using GCCXML. By using the
gcc xml front-end to to the gcc compiler suite, it is guar-
anteed that for every program that can be compiled with
gcc, also dictionary information can be generated.

The new Reflex library currently released provides re-
flection information already very close to the ISO/IEC stan-
dard for C++.

ACKNOWLEDGMENTS

We would like to thank the members of the LCG/SEAL
team for their help and cooperation. We would also like
to thank the ROOT team for their collaboration during the
design phase of the Reflex library.

REFERENCES

[1] http://www.boost.org/libs/typetraits/

[2] http://www.corba.org

[3] http://cern.ch/seal

[4] Pere Mato et al.SEAL: Common core libraries and services
for LHC applications.CHEP’04, San Diego, March 2003

[5] International Standardization Organization (ISO).Program-
ming languages - C++.American National Standards In-
stitute, New York, 1st edition, Sep 1998. Ref.No. ISO/IEC
14882:1998(E).

[6] http://lcg.web.cern.ch/LCG

[7] http://www.redhat.com

[8] http://www.scientificlinux.org

[9] http://www.gccxml.org

[10] http://lcgapp.cern.ch/project/persist

[11] http://root.cern.ch

http://www.boost.org/libs/type_traits/
http://www.corba.org
http://cern.ch/seal
http://lcg.web.cern.ch/LCG
http://www.redhat.com
http://www.scientificlinux.org
http://www.gccxml.org
http://lcgapp.cern.ch/project/persist
http://root.cern.ch

	INTRODUCTION
	GOALS
	THE REFLECTION MODEL
	EXAMPLE USE CASES
	PRODUCING THE REFLECTION INFORMATION
	STATUS AND OUTLOOK
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

