
JEFERSON LAB DATA ACQUISITION RUN CONTROL SYSTEM

V. Gyurjyan, C. Timmer, D. Abbott, G. Heyes, E. Jastrzembski, D. Lawrence, E. Wolin
TJNAF, Newport News, VA 23606, USA

Abstract
 A general overview of the Jefferson Lab data
acquisition run control system is presented. This run
control system is designed to operate the configuration,
control, and monitoring of all Jefferson Lab experiments.
It controls data-taking activities by coordinating the
operation of DAQ sub-systems, online software
components and third-party software such as external
slow control systems. The unique feature which sets this
system apart from conventional systems is its
incorporation of intelligent agent concepts. Intelligent
agents are autonomous programs which interact with each
other through certain protocols on a peer-to-peer level. In
this case, the protocols and standards used come from the
domain-independent Foundation for Intelligent Physical
Agents (FIPA), and the implementation used is the Java
Agent Development Framework (JADE). A lightweight,
RDF (Resource Definition Framework) based language
was developed to standardize the description of the run
control system for configuration purposes. Fault tolerance
and recovery issues are addressed. Key features of the
system include: subsystem state management,
configuration management, agent communication,
multiple simultaneous run management and
synchronization, and user interfaces. A user interface
allowing web-wide monitoring was developed.

INTRODUCTION
In the recent years many industrial, proprietary control

systems, with their specific hardware and software, were
being used in high energy and nuclear physics
experiments. Inevitably control and data acquisition
systems for the future experiments will face problems in
areas such as interoperability, scalability, and standard
user interface.

The CODA (CEBAF Online Data Acquisition) system
successfully satisfies the ever growing needs of the new
physics programs at JLAB [1]. The run control
component of the CODA was written almost seven years
ago, utilizing at that time the revolutionary, self consistent
object oriented programming language Eiffel.
Unfortunately over the years Eiffel did not catch on the
way Java did, partly because of being a commercial
product and having a single source of the distribution.
Current experiments at JLAB have new expectations for
run control, namely integration of new control
components or systems into the data acquisition (DAQ)
system, organizing control feedback between slow control
and DAQ components, etc. So, the old run control, being

a non-distributed, graphical user interface (GUI)
application, is very difficult to maintain and extend to
meet the current requirements of JLAB experiments. This
paper discusses relevant design and implementation
aspects of the new run control component of the CODA
data acquisition system.

SOFTWARE AGENTS
Software agent technology is a sub-field of the AI

(Artificial Intelligence), and currently is a rapidly
growing research field. An agent is a software entity
capable of acting intelligently on behalf of a user, in order
to accomplish a given task. A group of specialized agents
cooperate and work together to solve problems that are
beyond their individual capabilities. In an open and
distributed, multi-agent environment, the need for
standard mechanisms and specifications are vital for
ensuring interoperability of the autonomous agents. The
FIPA agent reference model was chosen in order to
provide the normative framework within which agents
can be deployed and operated [2]. The FIPA specification
establishes a logical reference model for agent creation,
registration, location, communication, migration and
retirement.

JADE, a FIPA specification Java implementation was
used to develop an agent platform for the control system
[3]. Using this framework, high level mediator agents,
specializing in agent platform management and system
coordination were developed. These agents are
responsible for creating agents on a platform, educating,
(based on the knowledge, provided by the user),
deploying, and recovering them in case of unsatisfactory
behaviour [4]. The efforts of these agents ensure system
reliability, robustness and fault tolerance.

Two different types of “stem cell” agents were also
developed. These were available for specialization into
either “supervisor” or “worker” agents.

RUN CONTROL DESIGN
ARCHITECTURE

The run control component of the JLAB data
acquisition system is designed to play the supervisory role
in the overall data production environment of the
experiment. The run control system is designed to reflect
the structure of CODA itself, thus it is composed of
separate elements (agents) that are likely to be
implemented as separate processes running on different
machines. This design was implemented by developing a

multi-agent control system, containing distributed control
application entities that collaborate dynamically to satisfy
control objectives of the DAQ system [4]. The
architecture of the run control can be seen as a hierarchy
of control entities called agents, each with responsibility
for a well defined component or part of the DAQ system
(Event Builder, Event Transfer, Event Recorder, Readout
Controller, etc.).An agent encapsulates control/monitoring
algorithms, as well as external interface details of the
DAQ/control component. This provides significant
advantages, namely clear separation of the control and
application layers of the component, and seamless
integration of legacy software components into the run
control environment. The agent state is the simplified
external view of the current working condition of the
CODA component or slow control component of the data
production system, under its responsibility. Each agent is
capable of receiving control messages from other agents
or the outside world. These messages can cause an agent
to execute actions which potentially will change the
visible state or monitor the state of the component. The
agents are organized into a hierarchical tree structures that
reflect the basic organization of the DAQ system itself.
An agent in the control tree can have only one supervisor
agent and can supervise many other agents. At the top of
the tree is a single agent, which represents the overall
state of the entire online system. A run control functional
diagram of the simplest online system, containing one
EB, one ER, a physics detector readout system, and
detector high voltage control system is shown in Figure 1.
Below the supervisor agent are a set of agents, one for

Figure 1: Example of the run control system.

each major subsystem of the online system, representing
an actual DAQ component or physical detector.
Obviously an agent of a sub-system itself can be a
supervisor of the agents responsible for individual sub-
components.

The distributed nature of the run control system allows for
grouping of agents into specialized virtual clusters or
domains. Even though the component agents in the agent
platform interact with each other as peers, the run control
system further implements a master/slave approach
between the human operator and the DAQ system, where
the operator is the master.
The agents in the hierarchal tree transmit messages
between themselves to exchange control commands and
status information. In the basic scenario a human operator
sends control commands through his agent (ua, see fig. 1)
to the supervisor agent, which forwards them to the sub-
system agents, who in turn forward them to component
agents and so on. The result of the control directives are
sent back up the tree so that the human operator is made
aware of any changes in the state of the system. Any
agent in the hierarchy can either perform some actions on
the commands or return results of the commands it
receives.

RUN CONTROL STATE MACHINE
 The run control system general state machine and
commands were developed, having common semantics,
mapped to the specific DAQ actions. Not all DAQ states
or transitions are exposed to the operator. Most of the run
control transitions are two or more step transitions, seen
as a single state transition by the operator. For example,
the configure transition is a multistep transition, during
which a number of basic (stem cell) type agents are
started on the agent platform [4].After each stem cell
agent performs its initialization procedure (basically
registration with the agent platform

Table 1: Run control state transitions

Operator System

State Command Invisible State
Initial Initial Configure
Differentiate
Predownload
Download

Configured Download

Postdownload
Preprestart
Prestart

Downloaded Prestart

Postprestart
Prego
Go

Prestarted Go

Postgo
Preend
End

Active End

Postend
Downloaded Reset Reset

Configured Pause Pause

Paused

registration services) they will be differentiated (i.e. they
will be specialized to be a representative controller for the
assigned DAQ component). At the next step of the
configure transition a supervisor agent is created on the
platform with the full knowledge of the hierarchical
control tree structure of the current DAQ system. The
configure transition ends after every agent participating in
the DAQ, is informed about the external processes and
execution mechanisms (inner communication protocols,
etc.), associated with the state transitions. When this state
has been reached the run and configuration parameters
can only be modified in a limited way. Table 1 provides a
detailed overview of all supported run control transitions.
A powerful feature of the agent framework is the
mechanism of attaching software processes to the state
transitions. This provides a framework that facilitates
extension of the DAQ state machine by integrating user
defined state machines (described as a process) in the
DAQ real-time environment.

CONTROL PROCESS ABSTRACTION
AND SYSTEM PARTITIONING

The DAQ and slow control components (hardware and
software) can be assembled into various possible working
DAQ systems. Hence, the run control system supports
partitioning of the online system and is able to run with a
variable set of components to control. The run control

system can have multiple, independent DAQ/control
systems running in parallel, with their hierarchical agent
trees and supervisor agents. This implies that the run
control system is capable of reading and parsing the
general system configuration data and can create and
configure multiple control agent trees. DAQ configuration

descriptions are stored in COOL (Control Oriented
Ontology Language) files. We developed this meta-
language based on RDF (Resource Definition
Framework) in order to achieve this control process
abstraction [5].

Table 2: Overview of the COOL taxonomy

Subject/Object Predicate
Control hasOption, acceptsComponent , etc.
Component hasProcess, hasNode, differentiate, etc
Process hasCommand, hasData, isPartOf, etc.
Command hasName, hasType,hasLoop,etc.
Data hasSemantics, hasContent, hasType,..
Node hasName, hasIP, isLocal,etc.
Loop stopAt, loopRepeat, loopDelay, etc.
Option hasDataFile, hasEventLimit, etc.

COOL defines a common vocabulary, by means of which
the information (control command, control actions,
configuration information, etc.) is shared among the
agents in the run control system. It includes
machine independent definitions of basic concepts in the
control domain and relations among them. Table 2
provides an overview of the COOL taxonomy, describing
the COOL resources and associated (not complete) set of
the properties (predicates).

GRAPHICAL USER INTERFACE

The graphical user interface (GUI) is intended to give a

view of the status of the data acquisition system and its
sub-systems (e.g. Event Transfer, Event filter, Event

builder, Back End, etc.) and to allow the user to control
its operation. The GUI was developed not only for
general users, such as shift operators, but also to provide
DAQ experts the ability to control and debug the DAQ
system. The run control system can have many GUIs
associated with a particular experiment. However, only
one GUI can be a master, capable of controlling the DAQ
system. The rest of the GUIs will visualize the monitored
information. In the run control environment the GUI is
considered to be a software component and will have an
associated agent in the platform to interact with the
DAQ/control component agents. Figure 2 shows a
snapshot of the GUI in action.

CONCLUSIONS

The new run control system for the JLAB data

acquisition system has been developed using intelligent
software agent technology. The run control system fault
tolerance and reliability was addressed using DAQ run
control platform agent recovery mechanisms. Run control
process abstraction has been implemented through the
control oriented ontology language. This allows
description and integration of the run control specific
processes, as well as control processes in general (slow
control, etc.) into the general control environment. The
current limitation of the run control system is that only
processes having well defined external, software
interfaces can be integrated into the run control system.
Currently our group is developing an API and libraries for

the component developers to integrate their components
into the run control system without developing
proprietary interfaces.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the prompt and

responsive help provided by the Jade development team
and community.

REFERENCES

[1] G. Heyes, et al. “The CEBAF on-line data acquisition
system”, Proceedings of the CHEP conference (Apr.
1994), pp. 122-126.

[2] Foundation for Intelligent Physical Agents. Available

at http://www.fipa.org

[3] Java Agent DEvelopmnet Framework. Available at

http://sharon.cselt.it/projects/jade

[4] V. Gyurjyan, et al. “FIPA agent based network

distributed control system”, Proceeding of the CHEP
conference (March 2003), arXiv:hep-ex/0305016

[5] K.Ahmed, et al. “Professional XML Meta Data”.

Wrox Pres Ltd.

