Software Highlights and Review Preparation

Graeme Stewart (CERN EP-SFT) and Liz Sexton-Kennedy (FNAL)
Software Highlights - 2021 Plans of Work

● SFT Projects’ 2021 plans of work have been presented
 ○ ROOT, https://indico.cern.ch/event/996294/
 ■ Many meetings with stakeholders and experiments in advance
 ○ Geant4 and Simulation R&D, https://indico.cern.ch/event/996264/
 ■ Requirements gathered from, e.g., technical forum meeting(s)
 ○ SPI and Key4hep, https://indico.cern.ch/event/996262/
 ○ CernVM, https://indico.cern.ch/event/1008722/

● For HSF we also did some planning for 2021
 ○ Details about plans that we have in general and also from working groups
 ○ Nothing cast in stone, but good to present these to the community and experiments

● Additional comments and input, of course, very welcome for all plans
Software Highlights - New releases

● **ROOT**
 ○ **v6.22/06** released 1 December 2020
 ■ Important bug fixes for the LHC experiments, OS X Big Sur and Apple’s M1 supported

● **Geant4**
 ○ **G4 10.7** released 4 December 2020
 ■ New VecGeom, templated field classes with better diagnostics, new tasking system, CMake improvements for modular builds, data structure optimisations (5-7% speedup!)
 ■ Improved GFlash for fast simulation, many physics model improvements (see backup)
 ○ 10.7p1 released 5 February 2021

● **CernVM and CVMFS**
 ○ **CernVM 4.5**, 27 January 2021 (EL 7.9)
 ○ **CernVM-FS 2.8.0**, 1 February 2021
 ■ OS X Big Sur, WSL2, parallelised garbage collection, template transactions

● **SPI**
 ○ LCG_99 release rolled out December to January
 ■ Python3 now the default, ROOT 6.22/06 based
Project Highlights

● **ROOT**
 ○ Merged llvm9 - full official C++17 support
 ■ Makes ROOT 6.24/00 imminent
 ○ Many papers coming at vCHEP: RNTuple, RANLUX++, distributed analysis
 ○ Effort: new RooFit developer; loosing ML people; RNTuple development held back by tension with CVMFS (same developer)
 ○ See backup for additional items

● **SPI and Key4hep**
 ○ Spack prototype now consistent with LCG ROOT build
 ○ Python3 is the default
 ○ devARM builds and more CUDA builds now available; support for AdePT
 ○ Gaudi tested in the nightly builds

● **CernVM**
 ○ 2021 Workshop held 1-2 February (virtual NIKEF)
 ○ Almost 100 participants
Training Events

- Second iteration of the C++ course ran 18-22 January
 - 75 places taken in 2½ minutes!
 - 134 people on the waiting list
 - Next course planned for August
 - Work ongoing to carpentry-fy this kind of training material
 - Try to have material suitable for self-study and sustainable training (any expert can teach)
 - Rebase the material to emphasise best modern practices

- This grew out of the Training Hackathon that happened at the end of 2020

- Github CI/CD Training course ran 16-20 February
 - 200 people registered - people seemed to be very happy with the course
 - Still trying to understand the best format for interactive work
Other News and Meetings

- **HSF/WLCG Workshop** took place in November (19-24), about 100 active participants most days
 - Sessions on WG updates (PyHEP, Training), detector simulation, generators and general R&D
- The new Compute Accelerator Forum is proving very popular (attracting around 70 participants; overview talk in February GDB)
 - Meetings planned now up to the summer
- HSF has joined forces with JLab and BNL colleagues to organise the Software and Computing Roundtable
 - Common topics for the community, with strong nuclear physics links
- GSoC projects have been proposed again, with the HSF acting as in umbrella organisation
 - 37 proposals (cf. 48 last year)
 - Why?
 - Remote interaction exhaustion?
 - Change in format, only half the coding hours?
 - We still believe this to be a useful resource, of course
- Setup an HSF sponsored Linux4Science discussion area
 - Due to recent RHEL announcements
 - https://github.com/HSF/Linux4Science/discussions/
 - Particularly to interact with other labs (not CERN/Fermilab) and smaller experiments
HL-LHC Review Planning
HL-LHC Review Planning

- We have had a number of meetings to decide on how to prepare for the review (WLCG Project Lead, Software Liaisons, Computing Coordinators)
- We have converged on the following broad structure:
 - Introduction
 - Event Generators
 - Detector Simulation
 - Foundation and Core Tools
 - Analysis
 - DOMA
- We have not included reconstruction projects as, after discussion, none were felt to require the attention of this review
Introduction

● Probably a shorter document
 ○ Outline the selection of common software areas
 ○ Describe any important differences in the needs of each experiment from CSAs
 ○ Mention briefly software which is important, but we don’t think needs to be reviewed (e.g., software where HL-LHC scaling is not an issue, longevity is assured, alternatives are available)
Event Generators

- We will prepare this document with HSF Generator WG convenors and others as editors (experiments and theorists)
- Generators is a varied suite of different packages, which have relatively complex interactions
- However, already identifying some of the key ones for HL-LHC we have
 - Evtgen (managers are in LHCb, but work is independent)
 - MadGraph5_aMC@NLO
 - POWHEG (core + important processes?)
 - Pythia
 - Sherpa
- AA generators (HIJING, EPOS, Angantyr) still being discussed
Detector Simulation

● Geant4 remains the key piece of software used by the experiments, with a direct and highly significant resource consumption
 ○ Geant4 project will take primary charge here
 ○ Include geometry and detector description aspects
 ■ VecGeom, DD4hep
 ○ Development of any generic fast simulation

● R&D projects that look at doing parts of the simulation on accelerators we would also like to include
 ○ AdePT and Celeritas
 ○ However, even by November this is likely to still be very much R&D
Foundation Tools

● Will cover mainly the role of ROOT as a foundation layer
 ○ I/O system and its evolution
 ○ Geometry representation and event display
 ○ JSROOT
 ○ PyROOT
 ○ Maths

● We did consider Gaudi as a common LHCb/ATLAS framework, but we believe it is better reviewed later
 ○ Tied intimately to these two experiments, highly successful and not presenting any particular problems
Analysis

● Focus here on tools used at the end of the data processing chain
 ○ Analysis groups and users

● ROOT is the standard and carries the vast majority of current analysis
 ○ Rooft
 ○ Histograms
 ○ RDataFrame
 ○ Clearly the ROOT team lead this part of the document

● New Pythonic tools
 ○ Many tools with different realms of applicability, gaining traction and showing promise
 ○ Examples: Scikit-HEP project (pyhf, uproot, etc.), Coffea project, zfit fitting package
 ○ Supported strongly by IRIS-HEP and many community developers, from whom editors for this section will be drawn, along with the HSF PyHEP and Analysis convenors
DOMA

● Have discussed with the WLCG/DOMA community, identifying the key projects to cover
 ○ Rucio
 ○ File Transfer Service (FTS)
 ○ Storage interfaces and caching layers
 ■ CTA, dCache, Xcache, StoRM, xrootd, http TPC, etc.
 ○ Network technologies including monitoring and software defined networks
 ○ CVMFS
 ○ Token based authentication

● Currently starting to form an editorial team and to contact specific projects
General Remarks

● ROOT plays a really unique role and crosses boundaries
 ○ In two documents, to match the needs, but these will cross-reference each other a lot
 ○ Need a suitable place for the project specific inputs
● We are driving this process between WLCG (project lead and software liaison), the experiments (computing coordination) and the HSF
 ○ This is helped, of course, but strong cross over between software projects and experiments
● We will try to quickly identify if the requirements are well understood by all parties
 ○ A few mini-workshops will be organised
● We need to have drafts of reports ready in time for feedback
● This makes the timeline from now to 1 October quite tight (pilot beams in Sept.)
 ○ However, there should not be any significant problem in meeting the deadline
Backup
Geant4 10.7 Physics Highlights

- New general facilities based on GFlash for fast simulation models
- New EM model for polarized gamma elastic scattering
- New Coulomb scattering model for e+/e- based on very accurate Differential Cross-Sections using Dirac Partial Wave Analysis
- New thermal model of positronium decay to gammas
- New model for gamma-ray elastic interactions, able to account for molecular interference effects
- Extended Glauber-Gribov approach to cover heavy hadrons, for charm and bottom hadron-nuclear (elastic and inelastic) cross-sections
- Improved treatment of anti-baryon interactions in the Quark-Gluon-String (QGS) model
- Revised maximum energy of applicability of elastic and inelastic cross-sections for ions and anti-ions nuclear interactions
- New coalescence model, useful in particular for Cosmic Ray applications
- New utility to access hadronic processes, allowing to customise hadronic cross-sections per particle type
Additional ROOT Highlights

- Multi-prong HPC R&D with openlab
 - optimizing ROOT's next-gen I/O format RNTuple for Intel DAOS object store
 - optimizing RNTuple for HPC cluster I/O (Lustre)
- Ongoing integration of RNTuple into CMSSW for NanoAOD output, as early reality check
- Several “RDataFrame in production” studies / benchmarks from physics groups (e.g. https://indico.cern.ch/event/919839/contributions/4147763/attachments/2161997/3649407/cmglInteractive-Dec15-2020.pdf)
 - show the success of this approach for production analyses
- Dynamic compute libraries for RooFit, giving vectorization (and soon: GPU) acceleration factor > 10, part of upcoming v6.24
- distRDF now in ROOT, part pf v6.24: the (near-term) future of distributed analysis with ROOT, replacing PROOF in the RDataFrame era
- v6.24 will have a new architecture independent RanLux++ implementation, matching the performance of the original Intel-only assembler implementation, integrated into ROOT. Highly relevant for HEP and outside.