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Performances from FCCSW
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FCCSW status

➢ The new FCC-ee LAr ECAL geometry has been validated
➢ Pull request on the master branch for the new geometry is opened: PR#433

➢ Electrode segmentation with constant ΔΘ tool is included in the PR but not used in the
detector description (still using Δη=0.01 at the moment)

➢ Need first to transition everything (e.g. caloTowerTool rely on the eta separation...)
➢ A first version of the Calo n-tuple maker is ready

➢ Allows to produce basic plots out of the box and to do performance studies with simple
scripts (free from fcc or edm4hep dataformat)

https://github.com/HEP-FCC/FCCSW/pull/433
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Performance comparison

➢ Energy resolution: old geometry (left) VS new geometry (right)

➢ New(old) geometry: 12(8) layers, 1(2) cm LAr bath front,  1.24(0.9) mm LAr gap,
1.4(1.39) mm Pb, 0.4(0.37) mm steel, 0.2(0.24) mm glue, 210(206) cm R

min
,

226(221) cm dZ
➢ 10 GeV electrons shot at 90o (full phi range), sliding window clustering, SF applied, no

upstream material correction, no noise, no magnetic field 
➢ Consistent cluster energy resolution

old geometry new geometry
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Performance comparison

➢ Theta resolution: old geometry (left) VS new geometry (right)

➢ New(old) geometry: 12(8) layers, 1(2) cm LAr bath front,  1.24(0.9) mm LAr gap,
1.4(1.39) mm Pb, 0.4(0.37) mm steel, 0.2(0.24) mm glue, 210(206) cm R

min
,

226(221) cm dZ
➢ 10 GeV electrons shot at 90o (full phi range), sliding window clustering, SF applied, no

upstream material correction, no noise, no magnetic field 
➢ Similar cluster theta resolution: ~0.57 mrad

old geometry new geometry
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Performance comparison

➢ Phi resolution: old geometry (left) VS new geometry (right)

➢ New(old) geometry: 12(8) layers, 1(2) cm LAr bath front,  1.24(0.9) mm LAr gap,
1.4(1.39) mm Pb, 0.4(0.37) mm steel, 0.2(0.24) mm glue, 210(206) cm R

min
,

226(221) cm dZ
➢ 10 GeV electrons shot at 90o (full phi range), sliding window clustering, SF applied, no

upstream material correction, no noise, no magnetic field

➢ Slightly better phi resolution: ~0.6 mrad (768 vs 704 phi bins)

old geometry new geometry
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Performance comparison

➢ Angular resolution: old geometry (left) VS new geometry (right)

➢ New(old) geometry: 12(8) layers, 1(2) cm cryostat front,  1.24(0.9) mm LAr gap,
1.4(1.39) mm Pb, 0.4(0.37) mm steel, 0.2(0.24) mm glue, 210(206) cm R

min
,

226(221) cm dZ
➢ 10 GeV electrons shot at 90o (full phi range), sliding window clustering, SF applied, no

upstream material correction, no noise, no magnetic field

old geometry new geometry
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Performance comparison

➢ Energy resolution: new geometry, positron (left) vs
electron (right)

➢ 1 GeV electrons (full phi and theta range)

➢ Magnetic field ON (2T)

➢ Energy resolution is better for electrons (~18%)

electronpositron
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Performance comparison

➢ Energy resolution: new geometry, positron (left) vs
electron (right)

➢ 4 GeV electrons (full phi and theta range)

➢ Magnetic field ON (2T)

➢ Energy resolution is better for electrons (~ 6%)

electronpositron
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Performance comparison

➢ Energy resolution: new geometry, positron (left) vs
electron (right)

➢ 10 GeV electrons (full phi and theta range)

➢ Magnetic field ON (2T)

➢ The difference disappears at 10 GeV (~1.7 % in the
other direction)

electronpositron

NB: without magnetic
field, Sigma=0.02479



  

Electrode Design
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Electrode Simulation

➢ Implemented a first Cadence model with one theta tower and imported it in ANSYS

➢ ~56 cm long electrode, ~2.1 cm wide (theta = 90o), 12 layers, one trace extract from two
signal pads, 2 shields (above and below the trace), 1 mm distance between signal pads

➢ Stack-up close to FCC-hh calorimeter paper

➢ 1.3 mm thick PCB (easy to change)

➢ Internal metallic layers could have a 17 μm thickness

➢ h
HV 

: assuming FR4 electrical rigidity of 20 kV/mm,
1.24 kV on the plates → electrical breakdown would
occur at 62 μm
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Electrode Simulation

➢ Impedance scan with ANSYS: all lines are at 50 Ohm except in the junction to the
vias

➢ Try to go as close from the via as we can with the shields
➢ Signal termination and ground distribution

➢ Current implementation: one through pin distributes the ground to a plate, traversed
by signal through pins

➢ Alternative: one through pin for every shield (without plate) → need to get around
the signal vias with the shield traces

➢ Shields run inside the cell of the given signal trace to avoid big impedance gap
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Separation between pads

➢ First four longitudinal layers extracted from front

➢ 1 mm pad separation also in the strip layer with the transmission line from layer 3
and four running beneath the strip pad separation 
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PCB design issue

➢ ANSYS only available for Windows (and a few RedHat distributions)

➢ Had to deploy it on CERN OpenStack virtual machines

➢ Even the highest OpensStack VM has very poor specs

➢ Especially disk space, already filled with Windows 10 + ANSYS
➢ Solving models generates big files → run very quickly out of disk space
➢ It seems to be possible to launch ANSYS job on the CERN clusters directly from the

VMs → will be investigated
➢ Would solve the disk issue and speed up the execution of these very demanding

simulations (one single cell simulation with COMSOL was taking ~50 minutes
on the VM) 

➢ Once we have the capacitance matrix, will investigate cross-talk in an equivalent
circuit (or directly from ANSYS if possible)

➢ Typical signal to be injected described in next slides
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Detector Signal 

➢ Drift velocity in LAr for 1 kV/mm at 87 K ~ 4.75 μm/ns

➢ New geometry: 1.24 mm LAr gaps → ~ 260 ns drift time

➢ Before shaping, signal is triangular with rising time < 1 ns and decay time ~ 260 ns

➢ Signal heights described in next slides

LARG-99-008
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10 GeV electron

45 GeV electron

Signal height

➢ Cell energy deposit for 1, 10 and 45
GeV electrons simulation (no noise
included, no sampling fraction)

➢ Show only energy deposit with E > 1
MeV and E < 40 MeV

➢ Once tails are cut, incident particle
energy does not seem to have a big
impact on the average energy per cell

1 GeV electron
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Signal height

➢ Goal: get the order of magnitude of the signal height to inject in Signal Integrity
studies

➢ First numbers derived with <5 MeV> per cell

➢ ~ 216 k electron/ion pairs (assuming 23.3* eV per pair)

➢ Shockley–Ramo's theorem: current induced on an electrode due to motion of a
charge is i = qv

D
/d

gap
 with

➢ q = elementary charge (1.6 10-19 C)
➢ v

D
 = drift velocity (4.75 μm/ns)

➢ d
gap 

is the LAr gap size (1.24 mm)

➢ Leads to a signal height of 0.13 μA
➢ ATLAS quoted ~ 3 μA/GeV in the LAr TDR (“/GeV” refers to the deposit in

the whole cell including absorber)
➢ Rescaling my number by the sampling fraction (say, 15%) gives 3.93 μA / GeV
➢ No signal attenuation taken into account

* 23.6 eV/pair quoted here 

https://lbne2-docdb.fnal.gov/cgi-bin/RetrieveFile?docid=4482&filename=Properties%20of%20LAr%20v9a.pdf&version=1
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Signal shape

➢ Signal: 1 ns rising time, 260 ns decay time, 0.13 μA height

➢ Fourier transform (signal sampled every ns i.e. 261 sampling points) shows that
most frequency components sit below 100 MHz
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Summary

➢ Machinery to get performance plots from FCCSW Full Sim with the new geometry
is getting in place

➢ Next steps

➢ Extend it to derive relative energy resolution VS energy + fit
➢ Produce performances for various design (will investigate e.g. what we get with

different  Noble Liquid/absorber material)
➢ Use the shower axis to be able to produce angular resolution with magnetic field ON

(will probably wait for key4hep transition as shower axis information is not foreseen
in fcc:edm)

➢ First design of a complete electrode theta tower implemented in Cadence

➢ Imported in ANSYS → impedance scan

➢ Investigating how to get capacitance matrix

➢ Might need to run on the CERN cluster, under investigation with the support team



  

Additional material

➢ ΔΘη
Φμ
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Binning issues

➢ Cell position is defined as cell center and cell have a non zero size → discretized
quantity → some binning choice can show spurious patterns
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Cell energy deposit

➢ No sampling fraction applied

1 GeV electrons
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Cell energy deposit

➢ No sampling fraction applied

10 GeV electrons
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Cell energy deposit

➢ No sampling fraction applied

45 GeV electrons
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Number of fired cells

➢ Number of fired cell for different energies (no noise, no
zero suppression, theta from 45o to 135o)

Average number of fired cell VS electron
energy - only three points: 1, 10, 45 GeV

1 GeV 10 GeV

45 GeV
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FCC-hh angular resolution
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Full readout theta view

➢ ΔΘηΦ
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