New results of the SPS Crab Cavity noise emittance blow-up analysis

F. Antoniou, H. Bartosik, <u>N.Triantafyllou</u>, A. Wolski In collaboration with: X. Buffat, P. Baudrenghien, T. Mastoridis, And input from N. Mounet, Y. Papaphilippou, G. Rumolo, C. Zannini

> 09/02/2021 187th HiLumi WP2 Meeting

Outline

- Introduction
- Suppression of CC noise induced emittance growth from impedance
 - Dependence on amplitude detuning
 - Sensitivity to chromaticity
 - Phase vs Amplitude noise
- What is the mechanism behind these observations?
 - Dipolar vs quadrupolar impedance
 - Pure dipolar noise induced emittance growth
 - CC noise at 200 MHz
 - Coherent tune shift vs incoherent spectrum
- Summary

Motivation

- SPS CC tests in 2018: MD5 → Various levels of noise were injected on the crab cavity RF to study the impact on the emittance growth at 270 GeV.
 - Measured emittance growth (dots) was found to be:
 - Different bunch by bunch.
 - Lower by a factor 2-3 than the one predicted from the available theoretical models * (crosses).
 - A difference up to a factor of 5 was observed for bunch 1 (blue), which was the only one found to be longitudinally stable.

Measured (Wire Scan) and calculated during coast for different noise levels.

Motivation

- SPS CC tests in 2018: MD5 → Various levels of noise were injected on the crab cavity RF to study the impact on the emittance growth at 270 GeV.
 - Measured emittance growth (dots) was found to be:
 - Different bunch by bunch.
 - Lower by a factor 2-3 than the one predicted from the available theoretical models * (crosses).
 - A difference up to a factor of 5 was observed for bunch 1 (blue), which was the only one found to be longitudinally stable.
- During <u>WP4 meeting (Nov 2020)</u> Yannis proposed to investigate **possible damping mechanisms from impedance.**
 - The impedance contribution could also explain the different bunch by bunch growth rate.
- Simulation studies with **PyHEADTAIL** were performed.
 - * P.Baudrenghien and T.Mastoridis PhysRevSTAB.18.101001

Measured (Wire Scan) and calculated during coast for different noise levels.

Crab cavity phase and amplitude noise

- As discussed in <u>PhysRevSTAB.18.101001</u> the phase and amplitude noise can be:
 - Treated separately for low noise levels.
 - Modeled as the following kicks on the momentum:

Phase noise
$$y'_1 = y'_0 + A \cos\left(\frac{2\pi f_{CC}}{c\beta_{rel}}z\right)$$

Amplitude noise $y'_1 = y'_0 + A \sin\left(\frac{2\pi f_{CC}}{c\beta_{rel}}z\right)$

A = Vo/Eb* $\Delta \phi(\Delta A)$. Scaling factor

Impedance model

- Used the complete SPS transverse impedance model for Q26 optics as provided by C. Zannini.
 - Kickers, walls, transitions, BPMs, indirect space charge, etc.
- It is considered that the wakes decay within 1 turn.

SPS wakefields, complete model

Simulation parameters - PyHEADTAIL

$\begin{array}{l} \underline{\textbf{Q26 wakes}}\\ \bullet \text{Complete SPS}\\ \text{model}\\ \bullet <\beta_{x} >= 42.0941 \text{ m}\\ \bullet <\beta_{y} >= 42.0137 \text{ m}\\ \bullet 500 \text{ longitudinal}\\ \text{slices} \end{array}$	Beam energy	270 GeV
	Horizontal/ Vertical working point, Q _x /Qy	26.13/ 26.18
	Synchrotron tune, Q _s	0.0051
	Accelerating RF harmonic/voltage	4620/5.088 MV
	Normalised horizontal/vertical emittance, $\epsilon_x^{\prime}/\epsilon_y^{\prime}$	2 µm/ 2 µm
	Vertical beta and alpha function at CC2, β_y/α_y	73.82 m/ 0 m
Single bunch	Horizontal and vertical dispersion, D_x/D_y	0 m/ 0 m
	Intensity	3.5e10
Local crabbing scheme	Macroparticles	5e5
	rms bunch length, σ_z	15.5 cm
	$\alpha_{xx} / \alpha_{xy}$	0 m ⁻¹ / 0 m ⁻¹

Outline

• Introduction

- Suppression of CC noise induced emittance growth from impedance
 - Dependence on amplitude detuning
 - Sensitivity to chromaticity
 - Phase vs Amplitude noise
- What is the mechanism behind these observations?
 - Dipolar vs quadrupolar impedance
 - Pure dipolar noise induced emittance growth
 - CC noise at 200 MHz
 - Coherent tune shift vs incoherent spectrum
- Summary

Emittance growth suppression from impedance

- Study with **phase noise** which was dominant in the experiment (here white noise is used).
- The dependence on α_{yy} (detuning coefficient) is studied as the machine non-linearities were not clearly characterised during the experiment.

Emittance growth suppression from impedance

- Study with **phase noise** which was dominant in the experiment (here white noise is used).
- The dependence on α_{yy} (detuning coefficient) is studied as the machine non-linearities were not clearly characterised during the experiment.

- Clear **suppression** of the emittance growth when the **wakefields are included**.
 - **Up to a factor of 2-2.5** for small values of amplitude detuning (could correspond to the realistic machine conditions).
- Clear **asymmetric dependence** on amplitude detuning.
 - Further analysis in the next slides.
 - Detailed mechanism being investigated.

Sensitivity to chromaticity

Sensitivity to chromaticity

Phase vs amplitude noise induced emittance growth

Q'_=0

Q`_=1

Phase noise Amplitude noise

Suppression of the emittance growth **only** for **phase noise** induced emittance growth.

- Phase noise is similar with a dipole noise kick but with a high order distortion.
- It seems that the observed suppression is related to the dipole motion.

Outline

• Introduction

- Suppression of CC noise induced emittance growth from impedance
 - Dependence on amplitude detuning
 - Sensitivity to chromaticity
 - Phase vs Amplitude noise
- What is the mechanism behind these observations?
 - Dipolar vs quadrupolar impedance
 - Pure dipolar noise induced emittance growth
 - CC noise at 200 MHz
 - Coherent tune shift vs incoherent spectrum

Summary

Dipolar and Quadrupolar impedance

The suppression of the emittance seems to be a result of the **dipolar impedance**.

Q'_v=1.0

Pure dipolar noise kick

• The suppression of the emittance growth from a pure dipolar noise kick is studied as a test case to better understand the mechanism behind the observations.

- With a pure dipole noise kick (mode 0) an emittance growth suppression up to a factor of 10 is observed.
- Without impedance, no emittance growth for zero amplitude detuning as expected

CC noise at 200 MHz

Q'_=0

۵`___

Phase noise Amplitude noise

2.0

1e4

2

1e4

2.0

The CC RF has same harmonic as the accelerating RF \rightarrow The phase noise kick is very close to a pure dipolar noise kick and thus similar strong suppression is observed.

No impact on the amplitude noise induced emit growth.

17

Overlap of the coherent tune and the incoherent spectrum

Overlap of the coherent tune and the incoherent spectrum

Connection to past studies with beam-beam interactions

- As pointed out by Xavier, it seems that the **overlap between the coherent mode and the incoherent spectrum** could explain these observations.
 - Theoretical studies^{*1} from Y. Alexahin showed that the **efficiency of the feedback** at suppressing emittance growth depends on the **overlap between the coherent mode and the incoherent spectrum**.
 - Simulations studies^{*2} for LHC from X. Buffat et al. show very good agreement with this theory.
 - However, in these studies the coherent mode was shifted by **beam-beam and not by impedance.**
- Future plans
 - Explore this mechanism with tracking simulations which are expected to be in good agreement with the theory.
 - Try to adapt Yuri's formalism to impedance in collaboration with Xavier.

*¹ Y. Alexahin, "On the Landau Damping and decoherence of transverse dipole oscillations in colliding beams" (<u>link</u>)
*² X. Buffat, "Modeling of the emittance growth due to decoherence in collision at the Large Hadron Collider" (<u>PhysRevAccelBeams.23.021002</u>)

Outline

• Introduction

- Suppression of CC noise induced emittance growth from impedance
 - Dependence on amplitude detuning
 - Sensitivity to chromaticity
 - Phase vs Amplitude noise
- What is the mechanism behind these observations?
 - Dipolar vs quadrupolar impedance
 - Pure dipolar noise induced emittance growth
 - CC noise at 200 MHz
 - Coherent tune shift vs incoherent spectrum

• Summary

Summary

- PyHEADTAIL simulations show that there is a significant emittance growth suppression from impedance.
- For small values of amplitude detuning (that could correspond to the realistic machine conditions) the suppression (~ a factor of slightly more than 2) seems to explain part of the discrepancy in experimentally observed noise emittance growth compared to the theoretical predictions.
- The suppression is a result of the dipolar wakes, dependant on the amplitude detuning.
- The overlap between the coherent mode and the incoherent spectrum could explain these observations.
- Studies are ongoing to understand the detailed mechanism in collaboration with colleagues from the CEI section.

Backup slides

Emittance suppression with a global CC scheme

- Phase noise, A=1e-8
- No sensitivity to the local or global crabbing.

Emittance growth, only in the presence of Q26 wakes

- The emittance growth in the horizontal plane is about 0.07 µm/h while the natural emittance growth in SPS is about 0.3-0.5 µm/h [reference].
 - We consider this horizontal emittance growth negligible.
- No emittance growth is observed in the vertical plane (<u>link</u> to old studies).