Technicolor and Lattice Gauge Theory

R. Sekhar Chivukula Michigan State University

Lattice 2010 June 14 - 19 Villasimius, Sardinia, Italy

The XXVIII International Symposium on Lattice Field Theory

Why Worry About EWSB? Loss of Unitarity in

$SU(2) \times U(1) @ E^2$

So what do we know about EW/SB?

Gauge Interactions: Flavor Universal!

 $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$ symmetry: $F_Z \approx F_W \approx 246$ GeV

SM "works" to O(few x 10^{-3})

Problems with a fundamental Higgs Boson

- No fundamental scalars observed in nature!
- No explanation of Electroweak Symmetry Breaking
- Hierarchy and Naturalness Problem

$$\bigcirc \qquad \Rightarrow \ m_H^2 \propto \Lambda^2$$

• Triviality Problem ...

Lattice Contribution to EWSB Higgs Lagrangian: $\frac{1}{2} \operatorname{Tr} \left(D^{\mu} \Phi D_{\mu} \Phi^{\dagger} \right) + \frac{\lambda}{4} \left(\operatorname{Tr} \left(\Phi \Phi^{\dagger} \right) - v^{2} \right)^{2}$.6 = 10.0λ Triviality Problem ... $\langle \Rightarrow \beta = \frac{3\lambda^2}{2\pi^2} > 0$ $\ln(\lambda_{R})$ Slope=-1 03(8 $\lambda(\mu) < \frac{3}{2\pi^2 \log \frac{\Lambda}{\mu}} \quad .$.6 .8 1.2 1.6 1.4 1 $\ln(|\ln(|\tau|)|)$

Kuti, et. al. PRL 61 (1988) 678

Dashen & Neuberger PRL 50 (1983) 1897

A Fork in the Road...

THOUGHT OF

- Make the Higgs Natural: Supersymmetry
- Make the Higgs Composite
 - -Little Higgs
 - -Twin Higgs
- Eliminate the Higgs

- Technicolor

-"Higgsless" Models

All involve strong dynamics!

"Theory Space": H. Murayama

Eliminate the Higgs...

Technicolor: <u>Higgsless since 1976!</u>

Eliminate Scalars: Electroweak gauge symmetry broken by the nonzero expectation value of a fermion bilinear, driven by new strong interactions.

Understanding of strongly-interacting gauge theories is extremely limited \Rightarrow theories constructed by analogy!

From QCD:

This line of reasoning inspired **Technicolor:**

- introduce new gauge force with symmetry SU(N)_{TC} force carriers are **techni**gluons, inspired by QCD gluons
- add **techni**quarks carrying SU(N)_{TC} charge: matter particles inspired by QCD quarks
 - e.g. $T_L = (U_L, D_L)$ forms a weak doublet U_R , D_R are weak singlets
 - Lagrangian has familiar global (chiral) symmetry SU(2)_L x SU(2)_R

If SU(N)_{TC} force were stronger than QCD ... then spontaneous symmetry breaking and pion formation would happen at a higher energy scale... e.g.

- gauge coupling becomes large at $\Lambda_{TC} \approx 1000 \, {
 m GeV}$
- $\langle T_L T_R \rangle \approx -(1 \text{ TeV})^3$ breaks electroweak symmetry
- `**techni**pions' Π_{TC} become the W_L, Z_L
- W and Z boson masses are the size seen in experiment!

$$f_{\pi} \rightarrow v$$

 $N_{c} \rightarrow N_{TC}$
fundamental \rightarrow ?

Gauge-Boson Scattering:

*J. Bagger et. al., hep-ph/9306256, 9504426

Classic TC @ LHC:

Gauge-Boson — Vector Meson Mixing:

*M. Golden, et. al., hep-ph/9511206

WZ Scattering at SLHC

 $\begin{array}{ll} p_T(\ell_1) > 150 \ \text{GeV}, & p_T(\ell_2) > 100 \ \text{GeV}, & p_T(\ell_3) > 50 \ \text{GeV} \\ & |m(\ell_1\ell_2) - m_Z| < 10 \ \text{GeV} & + \ \textbf{forward jets} \\ & E_T^{miss} > 75 \ \text{GeV} \end{array}$

F. Gianotti, et. al., hep-ph/0204087

Fermion Masses & ETC Interactions Extended Technicolor Interactions — Connect chiral-symmetries of TFs to quarks & leptons.

$$\langle \overline{U}U \rangle_{ETC} = \langle \overline{U}U \rangle_{TC} \exp\left(\int_{\Lambda_{TC}}^{M_{ETC}} \frac{d\mu}{\mu} \gamma_m(\mu)\right)$$

For QCD-like TC ("precociously" asymptotically free), γ_m is small over this range: Voodoo QCD*! $\langle \overline{U}U \rangle_{ETC} \approx \langle \overline{U}U \rangle_{TC} \approx 4\pi F_{TC}^3$ $\frac{M_{ETC}}{g_{ETC}} \approx 40 \,\text{TeV} \left(\frac{F_{TC}}{250 \,\text{GeV}}\right)^{\frac{3}{2}} \left(\frac{100 \,\text{MeV}}{m_{\odot}}\right)^{\frac{1}{2}}$

*Bjorken

"Toy" ETC Model

A "Toy" Model : $SU(N_{ETC})$ $N_{ETC} = N_{TC} + N_F$ $Q_L = (N_{ETC}, 3, 2)_{1/6}$ $L_L = (N_{ETC}, 1, 2)_{-1/2}$ $U_R = (N_{ETC}, 3, 1)_{2/3}$ $E_R = (N_{ETC}, 1, 1)_{-1}$ $D_R = (N_{ETC}, 3, 1)_{-1/3}$ $N_R = (N_{ETC}, 1, 1)_0$ $SU(N_{TC}+3)$ $\Lambda_1 \qquad \downarrow \qquad m_1 \approx \frac{4\pi F^3}{\Lambda_1^2}$ $SU(N_{TC} + 2)$ $\Lambda_2 \qquad \downarrow \qquad m_2 pprox rac{4\pi F^3}{\Lambda_2^2}$ $SU(N_{TC}+1)$ $\Lambda_3 \qquad \downarrow \qquad m_3 \approx \frac{4\pi F^3}{\Lambda_2^2}$ $SU(N_{TC})$ $[G_{ETC}, SU(3)_C] = [G_{ETC}, SU(2)_W] = 0$ "One-Family": $SU(8)_L \times SU(8)_R \rightarrow SU(8)_V$

Results in three isospin-symmetric families of degenerate quarks and leptons, $m_1 < m_2 < m_3$.

Shortcomings of this toy model:

- What breaks ETC?
- Need a separate scale for each family.
- All quark (& lepton) mixing angles zero.
- T₃ = ±¹/₂ fermions have equal masses.
 u_R & d_R must be in different representations of ETC.
- RH-technineutrinos \Rightarrow RH- ν 's, $m_{\nu} \neq 0$.

 $\mathsf{Mixing} \Rightarrow$

Nontrivial flavor structure!

Goal:

Can we construct a TC theory into which a theory of flavor can safely* be inserted?

*Assuming no GIM-like FCNC suppression

FCNCs and Walking Technicolor

Quark mixing implies transitions between different generations: $q \to \Psi \to q'$. ETC algebra:

$$\left[\overline{\mathbf{q}}\gamma\Psi,\overline{\Psi}\gamma q'\right] \supset \overline{\mathbf{q}}\gamma q'.$$

 $|\Delta S| = 2$ interactions:

$$\mathcal{L}_{|\Delta S|=2} = \frac{1}{\Lambda^2} (\overline{s}\Gamma^{\mu}d) (\overline{s}\Gamma'_{\mu}d) + \text{h.c.}$$

Bounds on FCNCs

Bound on operator coefficient (GeV $^{-2})$	Implied lower limit on ETC scale (10^3 TeV)
$-9.6 \times 10^{-13} < \Re(C_K^1) < 9.6 \times 10^{-13}$	1.0 $K^0 - \bar{K}^0$
$ C_D^1 < 7.2 \times 10^{-13}$	1.5 (!) $D^0 - \bar{D}^0$
$ C_{B_d}^1 < 2.3 \times 10^{-11}$	0.21 $B_d^0 - \bar{B}_d^0$
$ C^1_{B_s} < 1.1 \times 10^{-9}$	0.03 $B_s^0 - \bar{B}_s^0$
$-4.4 \times 10^{-15} < \Im(C_K^1) < 2.8 \times 10^{-15}$	10

UFit Collaboration: JHEP 0803, 049 (2008)

"Walking Technicolor"

Extended Technicolor Interactions — Connect chiral-symmetries of TFs to quarks & leptons.

A realistic (E)TC model will not be like QCD!

Holdom, Yamawaki et. al., Appelquist and Wijewardana

Does $\gamma_m = 1$ in a walking theory?

- Chiral symmetry breaking in an approximately conformal theory
- Large anomalous dimension of $\overline{\psi}_L \psi_R$
- Can we calculate αS ?
- What is the spectrum? PNGB masses?

PDG2006: Erler and Langacker

A Model Builder's Dream:

Figure: K. Holland XQCD 2008

Quark Masses from ETC Operators[†]

Region of interest for charm and strange!

						Gau	ge-NJL	[″] Mode	ls, top →
γ_m	0	0.25	0.5	0.75	1.0	1.25	1.5	1.75	2.0
m_q^{NDA}	$0.2~{ m MeV}$	$0.8 \mathrm{MeV}$	3.5 MeV	$15 { m MeV}$	$63 { m MeV}$	$260 { m MeV}$	$1.1 {\rm GeV}$	$4.7~{ m GeV}$	$20 \mathrm{GeV}$
m_q^{DA}	$1 { m MeV}$	$5.6 { m MeV}$	$32 { m ~MeV}$	$180 { m MeV}$	$1 { m GeV}$	$5.6~{ m GeV}$	$32~{ m GeV}$	$180 { m ~GeV}$	$1 { m TeV}$
OTT	TIMISTA	Curren stu	t lattice dies [*]	tAssu	uming no	o GIM-lik	Λ_{ETC}	$\simeq 10^3$ C	FeV ession

RSC and E. Simmons: arXiv 1005.5727 [hep-lat]

*See talk by Del Debbio

Lattice TC Questions

(1) Establish Phase Diagram
(2) What is γ_m? Near 1? 2?
(3) What is S? The spectrum?
(1)Is there a 0⁺⁺ (pseudo-dilaton, Higgs-like)state?
(4) Other marginal/relevant operators?
(1)Strong-ETC and "Gauge-NJL" model

"N_C"

Conclusions: EWSB Theory Summary

Theory	WW Scattering	Hierarchy Problem	"Calculable" @ LHC?	Precision EW	Λ_{UV}
Fundamental Higgs	I=J=0	YES!	~	~	I TeV - M _{GUT}
SUSY	I=J=0	No	~		M _{GUT} ?
Composite Higgs	I=J=0	No	~	f > 5 TeV	50 TeV
Higgsless	=J=1	No	~	Ideal fermions	10 TeV
Technicolor	=J=1	No	??	Non-QCD	few TeV

Help needed in <u>all</u> theories!

This talk

One thing we didn't talk about: TOP

Top interacting with Higgs Boson Prof. Jan-Henrik Andersen, University of Michigan

Thanks to...

- Elizabeth Simmons
- Tom Appelquist, Simon Catterall, Tom DeGrand, Luigi Del Debbio, Ken Lane, Francesco Sannino, Bob Shrock, Ben Svetitsky, Rohana Wijewhardana
- All the participants in the "Strong Dynamics Beyond the Standard Model" workshop at the Aspen Center for Physics, this summer.