#### Collider Phenomenology of models with Dynamical EW Symmetry breaking

#### **Alexander Belyaev**

#### **Southampton University & Rutherford Accelerator LAB**



# OUTLINE

- Motivation for models with Dynamical Symmetry Breaking
- LHC & ILC phenomenology and tools
- Beyond the Minimal Higgsless model
- Conclusions

#### **Collaborators:**

Chivukula, Christensen, Foadi, Frandsen, Järvinen, He, Kuang, Pukhov, Qi, Sannino, Simmons, Zhang

## The present status of the SM

- Based on SU(3)xSU(2)<sub>L</sub>xU(1)<sub>Y</sub> gauge symmetry spontaneously broken down to SU(3)xU(1)<sub>e</sub>:
- Matter: 3 generations of quarks and leptons
- One of the central role is played by Higgs field
  - one higgs doublet, interacts with all fields
  - develops condensate
  - W,Z bosons, lepton and quarks and Higgs field itself acquires mass



Higgs boson is not found yet and is the most wanted particle! The present Higgs mass limit is M<sub>H</sub>>114.4 GeV from LEP2 The mechanism responsible for EWSB symmetry remains unknown!

## What do we know about Electroweak Symmetry Breaking? It takes Place!

- status of theory of electro-weak interactions: per mil precision measurements confirm its SU(2)L × U(1)Y gauge structure
- the symmetry is broken W and Z bosons are massive: there are serious problems in any Lorentz-invariant theory of massive vector bosons, unless those particles are Yang-Mills bosons and the gauge symmetry is spontaneously broken [Nambu,Anderson; Higgs; Englert,Brout; Guralnik, Hagen,Kibble;...]
- How SU(2) × U(1) is broken?
   SU(2) × U(1) does not break its own symmetry couplings are weak
   Higgs mechanism?
  - Dynamical symmetry breaking (Technicolor)?
  - Extra dimensions?
  - ...?

#### Non-linear sigma model

#### One can eliminate h(x) and still have EWSB via Sigma term in the Higgsless model

$$\mathcal{L}_H \to \mathcal{L}_\Sigma = \frac{v^2}{4} \operatorname{tr} \left( \left[ \mathcal{D}^{\mu} \Sigma \right]^{\dagger} \mathcal{D}_{\mu} \Sigma \right)$$

$$\begin{split} &|D_{\mu}\varphi|^{2} \\ &= \left(0 \quad v/\sqrt{2}\right) \left|\frac{g}{\sqrt{2}}W^{+}\sigma^{+} + \frac{g}{\sqrt{2}}W^{-}\sigma^{-} + \frac{g}{2}W^{0}\sigma^{3} + \frac{g'}{2}B\right|^{2} \begin{pmatrix} 0 \\ v/\sqrt{2} \end{pmatrix} \\ &= \frac{v^{2}}{4} [g^{2}W^{+}W^{-} + \frac{1}{2}(-gW^{0} + g'B)^{2}] \end{split}$$

#### Non-linear sigma model

There are many 4D CP-conserving operators that can be written down

| £1=                                                | $=\frac{1}{2}g^2\alpha_1 B_{\mu\nu} \mathrm{Tr}(TF^{\mu\nu})$                  | $\mathcal{L}_6 = \alpha_6 \operatorname{Tr}(V_{\mu}V_{\nu}) \operatorname{Tr}(TV^{\mu}) \operatorname{Tr}(TV)$ | $\mathcal{L}_{11} = \alpha_{11} \operatorname{Tr}[(\mathfrak{D}_{\mu} V^{\mu})^{2}]$                                                       | $\mathcal{L}_{15} = 2i\alpha_{15} \operatorname{Tr}(V_{\mu} \mathcal{D}_{\nu} V^{\nu}) \operatorname{Tr}(TV^{\mu})$                                                                                                                                                                                   |
|----------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| £2 =                                               | $= \frac{1}{2} i g \alpha_2 B_{\mu\nu} \operatorname{Tr}(T[V^{\mu}, V^{\nu}])$ | $\mathcal{L}_{7} = \alpha_{7} \operatorname{Tr}(V_{\mu}V^{\mu})[\operatorname{Tr}(TV_{\nu})]^{2}$              | $\mathcal{L}_{12} = \frac{1}{2} \alpha_{12} \operatorname{Tr}(T \mathcal{D}_{\mu} \mathcal{D}_{\nu} V^{\nu}) \operatorname{Tr}(T V^{\mu})$ | $\mathcal{L}_{16} = i\alpha_{16} \operatorname{Tr}[T(\mathfrak{D}_{\mu}V_{\nu} + \mathfrak{D}_{\nu}V_{\mu})]$                                                                                                                                                                                         |
| £3 =                                               | $= ig\alpha_3 \operatorname{Tr}(F_{\mu\nu}[V^{\mu}, V^{\nu}])$                 | $\mathcal{L}_8 = \frac{1}{4}g^2 \alpha_8 [\mathrm{Tr}(TF_{\mu\nu})]^2$                                         | $\mathcal{L}_{13} = \frac{1}{2} \alpha_{13} [\mathrm{Tr}(T \mathcal{D}_{\mu} V_{\nu})]^2$                                                  | $	imes { m Tr}(V^{\mu}V^{ u})$                                                                                                                                                                                                                                                                        |
| £4 =                                               | $= \alpha_4 [\mathrm{Tr}(V_{\mu}V_{\nu})]^2$                                   | $\mathcal{L}_{9} = \frac{1}{2} i g \alpha_{9} \mathrm{Tr}(TF_{\mu\nu}) \mathrm{Tr}(T[V^{\mu}, V^{\nu}])$       | $\beta \mathcal{L}_{14} = \alpha_{14} [\mathrm{Tr}(F_{\mu\nu}V^{\nu})\mathrm{Tr}(TV^{\mu})]$                                               | $\mathcal{L}_{17} = \frac{1}{2} i \alpha_{17} \operatorname{Tr} [T(\mathfrak{V}_{\mu} V_{\nu} + \mathfrak{V}_{\nu} V_{\mu})]$                                                                                                                                                                         |
| £5 =                                               | $= \alpha_5 [\mathrm{Tr}(V_{\mu}V^{\mu})]^2$                                   | $\mathcal{L}_{10} = \frac{1}{2} \alpha_{10} [\mathrm{Tr}(TV_{\mu}) \mathrm{Tr}(TV_{\nu})]^2$                   | $-\mathrm{Tr}(F_{\mu\nu}V^{\mu})\mathrm{Tr}(TV^{\nu})]$                                                                                    | $\times \mathrm{Tr}(TV^{\mu})\mathrm{Tr}(TV^{\nu})$                                                                                                                                                                                                                                                   |
| [Ар                                                | pelquist, Bernard<br>wh                                                        | l '80 ; Longitano '80]<br><mark>ich can be tested at t</mark>                                                  | he LHC                                                                                                                                     | $\mathcal{L}_{18} = \frac{1}{2} i \alpha_{18} \operatorname{Tr}([V_{\mu}, T] \mathfrak{D}^{\mu} \mathfrak{D}^{\nu} V_{\nu})$                                                                                                                                                                          |
| qd 0.03<br>gd/qE by 0.025<br>0.02<br>0.015<br>0.01 | (c)<br>pp -> VVjj                                                              | 0.03<br>0.02<br>ZZ<br>0.01<br>0<br>-0.01                                                                       | wtv, ww<br>wtw, ww<br>wtw, ww<br>wtw, ww<br>ww<br>why<br>why<br>why<br>why<br>why<br>why<br>why<br>why<br>wh                               | only quartic interactions<br>for custodial symmetry<br>$\mathcal{L}_{4} = \alpha_{4}(\operatorname{tr} [V_{\mu}V_{\nu}])^{2}$<br>$\mathcal{L}_{m_{\mathcal{H}_{4}}}  \mathcal{L}_{5} = \alpha_{5}(\operatorname{tr} [V_{\mu}V^{\mu}])^{2}$<br>Eboli, Gonzalez–Garcia,<br>koshi, Novaes, Zacharov '98] |
| 0.005                                              | background                                                                     | -0.02                                                                                                          | [Ebol                                                                                                                                      | i, Gonzalez–Garcia,                                                                                                                                                                                                                                                                                   |

combined limit

-0.01

-0.02

Mizukoshi '06]

Alexander Belyaev

500

signal+backgrounc

1000 1500 2000 2500 3000 3500

E iet | pp

4000

-0.03

-0.03

"Collider Phenomenology of DEWSB models" Soton, July 7, 2010

0.01

0.02

0.03

0

 $\alpha_4$ 

#### Non-linear sigma model

There are many 4D CP-conserving operators that can be written down

| $\mathcal{L}_1 = \frac{1}{2}g^2\alpha_1 B_{\mu\nu} \operatorname{Tr}(TF^{\mu\nu})$           | $\mathcal{L}_6 = \alpha_6 \operatorname{Tr}(V_{\mu}V_{\nu}) \operatorname{Tr}(TV^{\mu}) \operatorname{Tr}(TV^{\nu})$         | $\mathcal{L}_{11} = \alpha_{11} \operatorname{Tr}[(\mathfrak{N}_{\mu} V^{\mu})^2]$                                                         | $\mathcal{L}_{15} = 2i\alpha_{15} \mathrm{Tr}(V_{\mu} \mathfrak{D}_{\nu} V^{\nu}) \mathrm{Tr}(T V^{\mu})$                |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| $\mathcal{L}_2 = \frac{1}{2} i g \alpha_2 B_{\mu\nu} \operatorname{Tr}(T[V^{\mu}, V^{\nu}])$ | $\mathcal{L}_7 = \alpha_7 \operatorname{Tr}(V_{\mu}V^{\mu})[\operatorname{Tr}(TV_{\nu})]^2$                                  | $\mathcal{L}_{12} = \frac{1}{2} \alpha_{12} \operatorname{Tr}(T \mathcal{D}_{\mu} \mathcal{D}_{\nu} V^{\nu}) \operatorname{Tr}(T V^{\mu})$ | $\mathcal{L}_{16} = i\alpha_{16} \operatorname{Tr}[T(\mathfrak{D}_{\mu}V_{\nu} + \mathfrak{D}_{\nu}V_{\mu})]$            |
| $\mathcal{L}_3 = ig\alpha_3 \operatorname{Tr}(F_{\mu\nu}[V^{\mu}, V^{\nu}])$                 | $\mathcal{L}_8 = \frac{1}{4}g^2 \alpha_8 [\mathrm{Tr}(TF_{\mu\nu})]^2$                                                       | $\mathcal{L}_{13} = \frac{1}{2} \alpha_{13} [\mathrm{Tr}(T \mathcal{D}_{\mu} V_{\nu})]^2$                                                  | $	imes { m Tr}(V^{\mu}V^{ u})$                                                                                           |
| $\mathcal{L}_4 = \alpha_4 [\mathrm{Tr}(V_\mu V_\nu)]^2$                                      | $\mathcal{L}_9 = \frac{1}{2} i g \alpha_9 \operatorname{Tr}(TF_{\mu\nu}) \operatorname{Tr}(T[V^{\mu}, V^{\nu}])$             | $\mathcal{L}_{14} = \alpha_{14} [\mathrm{Tr}(F_{\mu\nu}V^{\nu})\mathrm{Tr}(TV^{\mu})$                                                      | $\mathcal{L}_{17} = \frac{1}{2}i\alpha_{17} \operatorname{Tr}[T(\mathfrak{D}_{\mu}V_{\nu} + \mathfrak{D}_{\nu}V_{\mu})]$ |
| $\mathcal{L}_5 = \alpha_5 [\mathrm{Tr}(V_{\mu}V^{\mu})]^2$                                   | $\mathcal{L}_{10} = \frac{1}{2} \alpha_{10} [\mathrm{Tr}(TV_{\mu}) \mathrm{Tr}(TV_{\nu})]^2$                                 | $-\operatorname{Tr}(F_{\mu\nu}V^{\mu})\operatorname{Tr}(TV^{\nu})]$                                                                        | $	imes \mathrm{Tr}(TV^{\mu})\mathrm{Tr}(TV^{\nu})$                                                                       |
| [Appelquist, Bernard                                                                         | $\mathcal{L}_{18} = \frac{1}{2} i \alpha_{18} \operatorname{Tr}([V_{\mu}, T] \mathfrak{D}^{\mu} \mathfrak{D}^{\nu} V_{\nu})$ |                                                                                                                                            |                                                                                                                          |

ILC will slightly improve quartic coupling measurement



#### the only quartic interactions under custodial symmetry

$$\begin{array}{c} \mathcal{L}_{4} = \alpha_{4} (\operatorname{tr} \left[ V_{\mu} V_{\nu} \right])^{2} \\ \mathcal{L}_{5} = \alpha_{5} (\operatorname{tr} \left[ V_{\mu} V^{\mu} \right])^{2} \end{array}$$

[Eboli, Gonzalez-Garcia, Lietti, Novaes '00]

[Beyer, Kilian, Krstonosic, Monig, Reuter, Schmidt, Schroder '06]

## Higgs (if there is) prefers to be non-SM like!



## Why do/should we think about alternative way of Electroweak Symmetry Breaking?

#### Example of Comparison SM Higgs vs Technicolor

- simple and economical
- GIM mechanism, no FCNC problems, EW precision data are OK for preferably light Higgs boson
- SM is established, perfectly describes data
- fine-tuning and naturalness problem; triviality problem
- there is no example of fundamental scalar
- Scalar potential parameters and yukawa couplings are inputs

- complicated at the effective theory level
- FCNC constraints require walking, potential tension with EW precision data
- no viable ETC model suggested yet, work in progress
- no fine-tuning, the scale is dynamically generated
- Superconductivity and QCD are examples of dynamical symmetry breaking
- parameters of low-energy effective theory are derived once underlying ETC is constructed

## Electroweak Symmetry Breaking without Higgs boson but within the Electroweak theory

## Electroweak Symmetry Breaking without Higgs boson but within the Electroweak theory The Loss of Unitarity and EW precision data is the main worry!



## **Unitarity with and without Higgs boson**



## **Unitarity with and without Higgs boson**



# How one can preserve unitarity without Higgs ?

#### **Higgsless Models**

Low-energy effective theories with natural EW symmetry breaking alternative to Supersymmetry and Strong dynamics

- massive 4-d gauge bosons originate from 5-d gauge theory (moose representation) with appropriate boundary conditions
- massive vector boson scattering amplitude is unitarised via KK modes exchange – not the Higgs boson exchange!



#### **4D KK Mode Scattering**



- Cancellation of bad high energy behavior provided through
- exchange of massive vector particles

Chivukula, He, Dicus; Csaci, Grojean, Pilo, Murayama, Pilo, Terning

## DECONSTRUCTION

# moose diagram can be interpreted as the discretization of a continuum gauge theory in 5D along a fifth dimension



Discretize fifth dimension

Χ<sub>5</sub>

- 4D gauge group at each site
- Nonlinear sigma model link fields
- To include warping: vary f<sub>j</sub>
- For spatially dependent coupling: vary g<sub>k</sub>
- Continuum Limit: take  $N \rightarrow$  infinity
- Finite N, a 4D theory w/o 5D constraints

Arkani-Hamed, Georgi, Cohen & Hill, Pokorski, Wang

**.**.....

xμ

## **Conflict S and Unitarity**



 Z' resonance unitarizes WW scattering, similar to what Higgs boson does in SM (Chivukula,He,Dicus)

- Z' mass is bounded from above:  $m_{Z_1} < \sqrt{8\pi} v$
- ... and yields too much a value of S-parameter:  $\alpha S \ge \frac{4s_Z^2 c_Z^2 M_Z^2}{8\pi v^2} = \frac{\alpha}{2}$  [Chivukula, Simmons, He, Kurachi, Tanabashi]
- Solution delocalization of the fermions: mixing of "brane" and "bulk" modes! [Cacciapaglia, Csaki, Grojean, Reece, Terning; Foadi Gopalakrishna, Schmidt]
- Alternatively there could be a large contribution to T parameter

### **Fermion delocalization**



$$\begin{pmatrix} G^0_{\mu} \\ G^1_{\mu} \end{pmatrix} = \begin{pmatrix} c_g & s_g \\ s_g & -c_g \end{pmatrix} \begin{pmatrix} A_{\mu} \\ B_{\mu} \end{pmatrix}$$

$$\begin{pmatrix} \psi_L^0 \\ \psi_L^1 \end{pmatrix} = \begin{pmatrix} -c_f & s_f \\ s_f & c_f \end{pmatrix} \begin{pmatrix} \psi_L^A \\ \psi_L^B \end{pmatrix}$$

Mixing of light and heavy fermions helps to suppress contribution from heavy bosons to the EW observables!



## **Ideal Fermion Delocalization**

- Recall that the light W's wavefunction is orthogonal to wavefunctions of KK modes
- Choose fermion delocalization profile to match W wavefunction profile along the 5th dimension:  $g_i x_i \propto v_i^W$
- No (tree-level) fermion couplings to KK modes!



$$\hat{S} = \hat{T} = W = 0$$
$$Y = M_W^2 (\Sigma_W - \Sigma_Z)$$

Fermion delocalization profile can be chosen to match W-wave function along the 5<sup>th</sup> dimension: **leading to vanishing coupling of fermions to KK modes!** [Chivukula,Simmons,He, Kurachi, Tanabashi; Casalbuoni, De Curtis, Dolce, Dominici]

#### Three site model (TSM) simplest, realistic, highly deconstructed, higgsless





Alexander Belyaev

# The Three Site Model representative and testable!





- The parameter space is: simple and bounded
  - from below by experiment
  - from above by unitarity
- Low energy phenomenology of a Higgsless ED is dominated by the 1<sup>st</sup>



 The Three Site Model consistently implements the 1<sup>st</sup> KK mode in a gauge invariant way

**Can be tested at the LHC** 

## Tools

#### LanHEP [Andrei Semenov]

- Automatic generation of Feynman rules from the Lagrangian
- Has checks for
  - Hermiticity
  - BRST invariance
  - EM charge conservation
  - Particle mixings, mass terms, and mass matrices

#### CalcHEP

[Alexander Pukhov, AB, Neil Christensen]

- Automatic calculations of treelevel processes within userdefined model
- User friendly graphical interface
- Easy implementation of new models
  - Especially using LanHEP
- Feynman gauge and unitary gauge
  - Important cross check.
  - New features of CalcHEP

• batch interface

[Neil Christensen]

- Improved CalcHEP-MC
  - interface [AB, Pukhov]

#### **Example of model Implementation using LanHEP**



Alexander Belyaev

#### **Example of model Implementation using LanHEP**



Alexander Belyaev

#### **Gauge boson widths and branchings**

- Fermiophobic nature of the gauge bosons
- Dominant decay into WW and WZ pairs
- Z' Br does not depend much on deviation from ideal delocalization



#### W' decays

decay into fermions more strongly depends on fermion delocalization



## LHC SIGNATURES



Alexander Belyaev

#### **Three Site Model Signatures**



#### LHC reach for DY di-lepton signature



- Decay and production are suppressed by  $x^4$  compared to 'usual' PYTHIA Z' model
- One should be prepared to face with this scenario with very different Z'/W' features

#### LHC reach for DY di-lepton signature



- Decay and production are suppressed by x<sup>4</sup> compared to SM-like Z' models
- One should be prepared to face with this scenario with very different Z'/W' features
  - Discovery reach for DY process is about 0.5-0.6 TeV (vs 3-5 TeV)
  - fermiophobic Z' required by EW data (vs SM-like Z'-fermions couplings)
  - Z'WW coupling is non-vanishing to provide unitarity

#### Could be a big surprise for experimentalists expecting charming DY dilepton signatures from Z' upto 5 TeV!

Dilepton invariant mass spectrum



# LHC status at @7TeV

- LHC has really started to deliver luminosity
  - Bunches ~1e11
  - Had L<sub>inst</sub> of ~1e30 (only for 0.8h)
  - Currently running 10b4-2-4 (10 bunches, 4 colliding only in CMS)
  - Soon 12 bunches (8 colliding in CMS)

 Technical stop on July 17<sup>th</sup> to allow 24+ bunches

#### **CMS: Integrated Luminosity 2010**



## LHC projected potential @7TeV


#### Vector-boson fusion WZ → W' and associate W'Z production are much more promising: larger rates + clean signature



Alexander Belyaev

# $pp \rightarrow W^+Zjj$ : Exact tree-level calculation with CalcHEP

- No effective WZ approximation.
- Complete set of signal and background diagrams including interference.

| CalcHEP/symb              |                                                                                         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |                                      |
|---------------------------|-----------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------|
| Model: 3-site-tfg         |                                                                                         |                                | Calcher/symb<br>Delete,On/off,Restore,Latex 35/612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |                                      |
| Proc<br>7816 dia<br>0 dia | ess: p,p->W+,Z,j,j<br>Feynman diagrams<br>grams in 21 subprocesse<br>grams are deleted. | s are constructed.             | $\begin{array}{c} u1 \longrightarrow & u1 \\ & A \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$ | $u1 \longrightarrow u1$<br>A<br>W+<br>W+<br>U1<br>$U1 \longrightarrow Z$ | u1<br>u1<br>u1<br>W+<br>u1<br>U1<br>U1<br>U1<br>U1<br>U1<br>U1<br>U1<br>U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $u1 \longrightarrow u$<br>$A \longrightarrow U+$<br>w+<br>$u1 \longrightarrow d1$ | u1<br>A<br>W+<br>u1<br>W+<br>Z<br>d1 |
|                           | NN Subprocess                                                                           | Del Rest                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111                                                                      | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                   | <u>111</u>                           |
|                           | *<br>1  ul,ul -> Z,W+,ul,dl<br>2  ul,Ul -> Z,W+,Ul,dl                                   | 0  <b>612</b><br>  0  612      | $\begin{array}{c} u1 \\ A \\ \widetilde{W} \\ \widetilde{W} \\ \widetilde{W} \\ \widetilde{V} \\ \end{array} \\ \begin{array}{c} W^+ \\ V \\ Z \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A<br>₩<br>₩<br>¥                                                         | A<br>₩<br>₩<br>+Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $u1 \rightarrow W^+$<br>$\widetilde{W}^+ \cdots \rightarrow d1$                   | A<br>A<br>₩<br>₩<br>+<br>₩<br>+      |
|                           | 3  u1,d1 -> Z,W+,d1,d1<br>4  u1,D1 -> Z,W+,u1,U1<br>5  u1,D1 -> Z,W+,d1,D1              | 0  306<br>  0  612<br>  0  612 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $u1 \longrightarrow d1$                                                  | $	ilde{W}\widetilde{+}$ $	extsf{ul}$ $	extsf{u}$ $	extsf{u$ |                                                                                   | u1 $u1$ $Z$                          |
|                           | 6  u1,D1 -> Z,W+,G,G                                                                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |                                      |
|                           | /  uI,G -> Z,W+,G,dI<br>8  U1.u1 -> Z.W+.U1.d1                                          |                                | $u1 \longrightarrow u1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ul ul                                                                    | ul ul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | u1 u1                                                                             | u1→u1                                |
|                           | 9  U1,D1 -> Z,W+,U1,U1                                                                  | i 0i 306                       | W+<br>₩ĭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A W+                                                                     | A W+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A W+                                                                              | A ul                                 |
|                           | 10  d1,u1 -> Z,W+,d1,d1<br>11  d1 D1 -> Z W+ U1 d1                                      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WŦ ãĩ dl                                                                 | ₩̃∓́ z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ₩¥- Z                                                                             | ul dl                                |
|                           | 12  D1,u1 -> Z,W+,u1,U1                                                                 |                                | $u1 \longrightarrow Z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ul → · · · · Z                                                           | ul→d1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dl                                                                                | ×~~~₩+                               |
|                           | 13  D1,u1 -> Z,W+,d1,D1                                                                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |                                      |
|                           | 14  D1, U1 -> Z, W+, G, G<br>15  D1, U1 -> Z, W+, U1, U1                                |                                | a11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 411                                                                      | 411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 411                                                                               |                                      |
|                           | 16  D1,d1 -> Z,W+,U1,d1                                                                 | i 0i 612                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |                                      |
|                           | 1/  DI,DI $->$ Z,W+,UI,DJ<br>18  D1.G $->$ Z,W+,G,U1                                    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $u1 \rightarrow u1$                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |                                      |
|                           | 19  G,u1 -> Z,W+,G,d1                                                                   | i 0i 76                        | al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W+YW+                                                                    | W+ W+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ul                                                                                | al                                   |
|                           | 20  G,D1 -> Z,W+,G,U1                                                                   |                                | Č-Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | `~Z                                                                      | ``-Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | `~₩+                                                                              | `~Z                                  |
|                           | <u></u>                                                                                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                   |                                      |
|                           |                                                                                         |                                | F1-Help, F2-Man, F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | allo, PaDn, Home, En                                                     | d,# ,Esc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                   |                                      |

Alexander Belyaev

 $pp \to W'^{(*)}Z \to WZZ \to jj\ell^+\ell^-\ell^+\ell^-$ 



#### LHC reach for WZ->W' process

[AB, Chivukula, Christensen, He, Kuang, Pukhov, Qi, Simmons, Zhang '07]







the complete WZjj BG is factor 4 bigger then PYTHIA effective V-boson approximation!

To be compared with Birkedal, Matchev, Perelstein '05  $E_{j} > 300 \text{ GeV}$   $p_{Tj} > 30 \text{ GeV}$   $|\eta_{j}| < 4.5$   $|\Delta \eta(jj)| > 4$   $p_{T\ell} > 15 \text{ GeV}$   $|\eta_{\ell}| < 2.5$   $0.85M_{W'} < M_{T} < 1.05M_{W'}$ 

#### LHC reach for WZ->W' process

[AB, Chivukula, Christensen, He, Kuang, Pukhov, Qi, Simmons, Zhang '07]





luminosity (fb<sup>-1</sup>) for discovery/observation

#### LHC reach for WZ->W' process

[AB, Chivukula, Christensen, He, Kuang, Pukhov, Qi, Simmons, Zhang '07]





#### LHC reach for s-channel Z' and W' [Ohl,Speckner '08]



luminosity (fb<sup>-1</sup>) for discovery/observatior

Alexander Belyaev

# **ILC PHENOMENOLOGY**

Alexander Belyaev

# **ILC potential**

clean environment and precision measurements [e.g. see Ohl, Djouadi, ... talks]

• precision gauge boson couplings measurement will allow to establish sum rules  $g_{WWWW} = g_{WWZ}^2 + g_{WW\gamma}^2 + \sum_i (g_{WWV}^{(i)})^2$ ,

$$4g_{\rm WWWW} M_{\rm W}^2 = 3 \left[ g_{\rm WWZ}^2 M_{\rm Z}^2 + \sum_i (g_{\rm WWV}^{(i)})^2 (M_i^0)^2 \right]$$

- high mass resolution will allow to perform spectroscopy of new accessible resonances expected to be below 1 TeV
- has indirect sensitivity to larger mass scale than LHC
- dominant hadronic decay modes can be used now W' mass can be fully reconstructed

# **Prospects for ILC@ 0.5 TeV:** $g_{wwz}$



Alexander Belyaev

### W' production at the ILC via VBF



Birkedal, Matchev, Perelstein '05

# **Beyond the 3-site model**

there is an increasing progress in Higgsless models and Technicolor models see e.g. recent talks at "Dynamical Electroweak Symmetry Breaking", Sep '08, Denmark

equivalent description on the languages of Deconstructon and Technicolor [Barbieri, Isidori, Rychkov,Trincherini '08]



Z' is not necessarily fermiophobic! Complementarity of DY di-lepton and di-boson channels

# Effective Lagrangian for SU(2)<sub>L</sub> X SU(2)<sub>R</sub> to order O(p<sup>2</sup>)

$$\mathcal{L}_{\text{boson}} = -\frac{1}{2} \text{Tr} \left[ \widetilde{W}_{\mu\nu} \widetilde{W}^{\mu\nu} \right] - \frac{1}{4} \widetilde{B}_{\mu\nu} \widetilde{B}^{\mu\nu} - \frac{1}{2} \text{Tr} \left[ F_{\text{L}\mu\nu} F_{\text{L}}^{\mu\nu} + F_{\text{R}\mu\nu} F_{\text{R}}^{\mu\nu} \right]$$

$$\mathcal{L}_{\text{Higgs}} = \frac{\mu^2}{2} \text{Tr} \left[ M M^{\dagger} \right] - \frac{\lambda}{4} \text{Tr} \left[ M M^{\dagger} \right]^2$$

$$W_{\mu
u}$$
 and  $B_{\mu
u}$  are EW filed strength tensors

$$F_{
m L/R\mu
u}$$
 are the field strength tensors  $A_{
m L/R\mu}$  associated to the vector meson fields  $A_{
m L/R\mu}$ 

**2x2 Matrix** 
$$M = \frac{1}{\sqrt{2}} \left[ v + H + 2 \ i \ \pi^a \ T^a \right] , \quad a = 1, 2, 3$$

# Covariant derivative

$$D_{\mu}M = \partial_{\mu}M - i \ g \ \widetilde{W}^{a}_{\mu} \ T^{a}M + i \ g' \ M \ \widetilde{B}_{\mu} \ T^{3}$$

# Effective Lagrangian for SU(2)<sub>L</sub> X SU(2)<sub>R</sub> to order O(p<sup>2</sup>)

$$\mathcal{L}_{\text{Higgs-Vector}} = m^2 \operatorname{Tr} \left[ C_{\text{L}\mu}^2 + C_{\text{R}\mu}^2 \right]$$
  
+  $\frac{1}{2} \operatorname{Tr} \left[ D_\mu M D^\mu M^\dagger \right] - \tilde{g^2} r_2 \operatorname{Tr} \left[ C_{\text{L}\mu} M C_{\text{R}}^\mu M^\dagger \right]$   
-  $\frac{i \, \tilde{g} \, r_3}{4} \operatorname{Tr} \left[ C_{\text{L}\mu} \left( M D^\mu M^\dagger - D^\mu M M^\dagger \right) + C_{\text{R}\mu} \left( M^\dagger D^\mu M - D^\mu M^\dagger M \right) \right]$   
+  $\frac{\tilde{g}^2 s}{4} \operatorname{Tr} \left[ C_{\text{L}\mu}^2 + C_{\text{R}\mu}^2 \right] \operatorname{Tr} \left[ M M^\dagger \right]$ 

$$C_{\mathrm{L}\mu} \equiv A_{\mathrm{L}\mu} - \frac{g}{\tilde{g}}\widetilde{W_{\mu}} , \quad C_{\mathrm{R}\mu} \equiv A_{\mathrm{R}\mu} - \frac{g'}{\tilde{g}}\widetilde{B_{\mu}} .$$

#### **NMWT** parameter space and particle content

• fixing S=0.3 ~ S<sub>pert</sub> and using WSR parameter space is reduced to  $M_A, \ \tilde{g}, \ s, \ M_H$ 

$$S = \frac{8\pi}{\tilde{g}^2} (1 - \chi^2) ,$$
  

$$r_2 = r_3 - 1 .$$
  

$$\chi \equiv 1 - \frac{v^2 \tilde{g}^2 r_3}{4M_A^2}$$

- $s, M_H$  have sizable effect in the process involving composite Higgs
- new particles two triplets of heavy mesons:  $R_1^{\pm}(R_2^{\pm})$  and  $R_1^0(R_2^0)$

# **Walking Technicolor and S-parameter**

**Perturbative S reads as:**  $S_{\text{pert}} = \frac{N_D}{6\pi}$ 

N<sub>c</sub>=2 case

**Conformal window condition for the fundamental representation** 

$$N_f \simeq 8 \Longrightarrow S_{\text{pert}} \simeq 0.42$$

Conformal window condition for the  $N_f \simeq 2 \Longrightarrow S_{\rm pert} \simeq 0.16$  adjoint representation

Small N<sub>f</sub> is preferred N<sub>f</sub>=2 in the higher dimensional representation of N<sub>c</sub>=2 case is promising to be studied: Minimal Walking Technicolor (Sannino, Tuominen 05)

#### **Viable NMWT parameter space**



Barbieri, Pomarol, Rattazzi, Strumia 04

# **Decay Branching Ratios (R<sub>1</sub>)**



# **Decay Branching Ratios (R<sub>2</sub>)**



# **LHC Signatures**



# Signature (1)

(1)  $\ell^+\ell^-$  signature from the process  $pp \to R^0_{1,2} \to \ell^+\ell^-$ 



double resonance signal pattern can be resolved --distinct footprint, different from 3-site model (Chivukula,Coleppa, Di Chiara, Simmons, He, Kurachi,Tanabashi 06) or generic Z' models

Alexander Belyaev

# Signature (2)

(2)  $\ell + \not\!\!\!E_T$  signature from the process  $pp \to R_{1,2}^{\pm} \to \ell^{\pm} \nu$ 



for higher masses only one resonance is observed

# Signature (3)

(3)  $3\ell + \not\!\!\!E_T$  signature from the process  $pp \to R_{1,2}^{\pm} \to ZW^{\pm} \to 3\ell\nu$ 



highly complementary channel to fermiophobic ones: not very high rates, but clean signal

## LHC discovery potential for NMWT



# LHC discovery potential for NMWT

(3)  $3\ell + \not\!\!\!E_T$  signature from the process  $pp \to R_{1,2}^{\pm} \to ZW^{\pm} \to 3\ell\nu$ 





Higgs-vector boson associate production can be significantly enhanced noted by Zerwekh 06

### NMWT model studies at ILC@1TeV (work in progress)



Alexander Belyaev

# **Our Expectations from LHC**

Alexander Belyaev











# **Signatures could look alike**





Alexander Belyaev

#### The strategy for delineating of underlying theory



Alexander Belyaev

# **First Steps towards "Dictionary"**

A.B., Asesh Datta, Albert De Roeck, Rohini Godbole, Bruce Mellado, Andreas Nyffeler, Chara Petridou, D.P. Roy, Pramana 72:229-238,2009. e-Print: arXiv:0806.2838 [hep-ph]

| Variables                                                           |                   | SUSY (MSSM)                                     | LHT                                                        | UED                                                                                         |  |
|---------------------------------------------------------------------|-------------------|-------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|
| Spin                                                                |                   | heavy partners<br>differ in spin<br>by 1/2      | heavy partners<br>have the same<br>spin, no heavy<br>gluon | heavy partners<br>have the same<br>spin                                                     |  |
| Higher level                                                        |                   | NO                                              | NO                                                         | YES                                                                                         |  |
| modes                                                               |                   | heavy partners                                  | heavy partners                                             | heavy partners                                                                              |  |
| $N_{l+l+}/N_{l-l}$                                                  | !                 | $R_{SUSY} < R_{LHT}$                            | $R_{LHT}$                                                  | $R_{UED} \simeq R_{LHT}$                                                                    |  |
| SS leptons ra                                                       | ates              | from several<br>channels:<br>SS heavy fermions, | only from<br>SS heavy<br>fermions                          | only from<br>SS heavy<br>fermions                                                           |  |
|                                                                     |                   | Majorana fermions                               | Majorana fermions                                          |                                                                                             |  |
| $R = \frac{N(\not\!\!\!E_T + jets)}{N(l's + \not\!\!\!E_T + jets)}$ |                   | $R_{\rm SUSY}$                                  | $R_{\rm LHT} < R_{\rm SUSY}$                               | $R_{\rm UED}$                                                                               |  |
| b-jet multiplicity                                                  |                   | enhanced (FP)                                   | not enhanced                                               | not enhanced                                                                                |  |
| Single heavy top                                                    |                   | NO                                              | YES                                                        | YES<br>via KK2 decay                                                                        |  |
| polarization                                                        | $tt + E_T$        | to be studied                                   | to be studied                                              | to be studied                                                                               |  |
| effects                                                             | $\tau \tau + E_T$ | to be studied                                   | to be studied                                              | to be studied                                                                               |  |
| Direct DM<br>detection rate                                         |                   | high (FP)<br>low (coann)                        | low<br>(Bino-like LTP)                                     | typically low for<br>$\gamma_1(5D)$ DM [22]<br>typically high for<br>$\gamma_H(6D)$ DM [22] |  |
#### **Tools for delineating underlying theory**



#### **Tools for delineating underlying theory**



# **Conclusions and outlook**

- Dynamical EWSB models are compelling:
  - no hierarchy problem, analog is realized in nature (QCD), effective theory parameters are potentially derivable from underlying theory
  - holography principles, applications to hadronization
  - new phenomenology including new DM developments
- Models implemented:
  - 3-site model, 3-site HLS model
  - 4-site model
  - MWTC, NMWTC + DM sector
  - New requests?

# **Conclusions and outlook**

- Distinctive phenomenology:
  - One or several Z'/W'
  - Boosted Z,W,H bosons and boosted heavy quarks
  - Combining different signatures: the way to establish no-loose theorem?
  - ➡ 3-site model: di-lepton DY discovery range is up to M<sub>w</sub> ~0.5-0.6 TeV, trilepton signature from WZ->W' signal can completely cover M<sub>w</sub> space
  - one step beyond the minimal Higgsless model
  - Z' is not necessarily fermiophobic
  - equivalence between 4-site and NMWT models
  - DM within TC models: more exciting signatures collider ones as well as signals at Direct and Indirect DM search experiments
- What we expect from this workshop
  - discuss current progress and new ideas
  - discuss new possible projects
  - requests for tools? (FR generators, ME generators, MC generators)
  - Anything not mentioned above?

# **Conclusions and outlook**

- Distinctive phenomenology:
  - One or several Z'/W'
  - Boosted Z,W,H bosons and boosted heavy quarks
  - Combining different signatures: the way to establish no-loose theorem?
  - → 3-site model: di-lepton DY discovery range is up to M<sub>w'</sub> ~0.5-0.6 TeV, trilepton signature from WZ->W' signal can completely cover M<sub>w'</sub> space
  - one step beyond the minimal Higgsless model
  - Z' is not necessarily fermiophobic
  - equivalence between 4-site and NMWT models
  - DM within TC models: more exciting signatures collider ones as well as signals at Direct and Indirect DM search experiments
- What we expect from this workshop
  - discuss current progress and new ideas
  - discuss new possible projects
  - requests for tools? (FR generators, ME generators, MC generators)
  - Anything not mentioned above?

# THANKS TO ALL OF YOU!



## **Allowed deviation from IDL**

-0.33 < S < 0.07 at 95% C.L.  $M_{H}^{ref} = 117 {\rm GeV}$ 



[Matsuzaki, Chivukula, Simmons, Tanabashi; Dawson, Jackson]

#### **One more hope for the ILC? (Dubna, Russia)**

Sissakian, Shirkov, Trubnikov, Budagov, Denisov, Kozlov, Tokareva, Vorozhtsov, Ivanov '08



"Collider Phenomenology of DEWSB models" Soton, July 7, 2010

#### Appendix

### **TSM:** Representative of a Higgsless Extra Dimension

 Low energy phenomenology of a Higgsless ED is dominated by the 1<sup>st</sup> KK mode.



 The Three Site Model consistently implements the 1<sup>st</sup> KK mode in a gauge invariant way.

### **TSM:** Representative of Dynamical EWSB



- Warped Higgsless ED is conjectured to be dual to a walking technicolor theory.
- The Three Site Model consistently implements the vector resonances (TC) in a gauge invariant way.
- Satisfies precision electroweak measurements (S=0).

#### **The Three Site Model**



Chivukula, Coleppa, Di Chiara, Simmons PRD **74**, 075011 (2006)

"Collider Phenomenology of DEWSB models" Soton, July 7, 2010



### **Particle Content**

 $\gamma, G$  $Z', W'^{\pm}$  $Z,W^{\pm}$  $\left( egin{array}{c} u \ d \end{array} 
ight) \left( egin{array}{c} c \ s \end{array} 
ight) \left( egin{array}{c} t \ b \end{array} 
ight) \qquad \left( egin{array}{c} u' \ d' \end{array} 
ight) \left( egin{array}{c} c' \ s' \end{array} 
ight) \left( egin{array}{c} t' \ b' \end{array} 
ight)$  $\left( egin{array}{c} 
u_e \\
e \end{array} 
ight) \left( egin{array}{c} 
u_\mu \\
\mu \end{array} 
ight) \left( egin{array}{c} 
u_ au \\
 au \end{array} 
ight) = \left( egin{array}{c} 
u'_e \\
 e' \end{array} 
ight) \left( egin{array}{c} 
u'_\mu \\
 e' \end{array} 
ight) \left( egin{array}{c} 
u'_\pi \\
 e' \end{array} 
ight)$ 



 $SU(2)_0 imes SU(2)_1 imes U(1)_2$ 

$$W_j = \left(egin{array}{ccc} rac{1}{2} W_j^0 & rac{1}{\sqrt{2}} W_j^+ \ rac{1}{\sqrt{2}} W_j^- & -rac{1}{2} W_j^0 \ rac{1}{\sqrt{2}} W_j^- & -rac{1}{2} W_j^0 \end{array}
ight)$$

$$W_2=\left(egin{array}{ccc} rac{1}{2}W_2^0 & 0 \ 0 & -rac{1}{2}W_2^0 \end{array}
ight)$$

#### **Gauge Sector**

$$g_0 = g, \quad g_1 = \tilde{g}, \quad g_2 = g'$$
  

$$\tilde{g} \gg g, g'$$
  

$$\Rightarrow g/\tilde{g} = x \ll 1, g'/g = s/c = t$$
  

$$\frac{1}{e^2} = \frac{1}{g^2} + \frac{1}{\tilde{g}^2} + \frac{1}{g'^2}$$

$$\mathcal{L}_{F^2} = -rac{1}{2} ext{Tr} \Big[ F_0^2 + F_1^2 + F_2^2 \Big]$$
 where

$$F_{j}^{\mu
u}=\partial^{\mu}W_{j}^{\mu}-\partial^{
u}W_{j}^{\mu}+ig_{j}\left[W_{j}^{\mu},W_{j}^{
u}
ight]$$

Casalbuoni, De Curtis, Dominici, Gatto (BESS) Phys. Lett. B155 (1985) 95



 $SU(2)_0 imes SU(2)_1 imes U(1)_2$ 

**Gauge - Goldstone Sector** 

$${\cal L}_{D\Sigma} = {f^2\over 2} {
m Tr} \Big[ \left( D_\mu \Sigma_0 
ight)^\dagger D^\mu \Sigma_0 + \left( D_\mu \Sigma_1 
ight)^\dagger D^\mu \Sigma_1 \Big]$$

 $\Sigma_j = e^{irac{2\pi_j}{f}}$ 

$$D_\mu \Sigma_j = \partial_\mu \Sigma_j + i g_j W_j \Sigma_j - i g_{j+1} \Sigma_j W_{j+1}$$

$$\pi_j = \left(egin{array}{ccc} rac{1}{2}\pi_j^0 & rac{1}{\sqrt{2}}\pi_j^+ \ rac{1}{\sqrt{2}}\pi_j^- & -rac{1}{2}\pi_j^0 \end{array}
ight)$$

This gives the gauge boson mass matrices:

$$M^2_{\pm} = rac{f^2}{4} \left( egin{array}{cc} g^2_0 & -g_0 g_1 \ -g_0 g_1 & 2g^2_1 \end{array} 
ight)$$

$$M_N^2 = rac{f^2}{4} \left( egin{array}{ccc} g_0^2 & -g_0 g_1 & 0 \ -g_0 g_1 & 2 g_1^2 & -g_1 g_2 \ 0 & -g_1 g_2 & g_2^2 \end{array} 
ight)$$



Independent parameters:  $M_w$ ,  $M_z$ , e,  $M_w$ . Dependent parameters:  $g_0$ ,  $g_1$ ,  $g_2$ , f

 $SU(2)_0 imes SU(2)_1 imes U(1)_2$ 

$$egin{aligned} x &= rac{g_0}{g_1} & t = rac{g_2}{g_0} \ rac{1}{e^2} &= rac{1}{g_0^2} + rac{1}{g_1^2} + rac{1}{g_2^2} \end{aligned}$$

$$rac{M_W^2}{M_{W'}^2} = rac{2{+}x^2{-}\sqrt{4{+}x^4}}{2{+}x^2{+}\sqrt{4{+}x^4}}$$

$$rac{M_W^2}{M_Z^2} = rac{2{+}x^2{-}\sqrt{4{+}x^4}}{2{+}x^2(1{+}t^2){-}\sqrt{4{+}x^4(1{-}t^2)^2}}$$

$$M_W = g_1 f rac{\sqrt{2 + x^2 - \sqrt{4 + x^4}}}{2\sqrt{2}}$$





## **Ideal Delocalization (IDEL)**

$$g_{i}v_{Le}^{i}v_{L\nu}^{i} = [g_{W_{SM}} + O(x^{4})]v_{W}^{i}$$
$$g_{W_{TSM}} = g_{0}v_{Le}^{0}v_{L\nu}^{0}v_{W}^{0} + g_{1}v_{Le}^{1}v_{L\nu}^{1}v_{W}^{1}$$





Chivukula, Simmons, He, Kurachi, Tanabashi: PRD 72, 015008 (2005) Casalbuoni, Deandrea, De Curtis, Dominici, Gatto, Grazzini, : PRD 53, 5201 (1996)

Alexander Belyaev



 $SU(2)_0 imes SU(2)_1 imes U(1)_2$ 

**Gauge Fixing Sector** 

$$\mathcal{L}_{GF} = - ext{Tr} \Big[ G_0^2 + G_1^2 + G_2^2 \Big]$$
 where

$$G_0 = \partial \cdot W_0 - rac{1}{2} g_0 f(\pi_0 \quad )$$

$$\pi_1^{ns} = \left(egin{array}{cc} rac{1}{2} \pi_j^0 & 0 \ 0 & -rac{1}{2} \pi_j^0 \end{array}
ight)$$

$$egin{aligned} G_1 &= \partial \cdot W_1 - rac{1}{2}g_1fig(\pi_1 - \pi_0ig) \ G_2 &= \partial \cdot W_2 - rac{1}{2}g_2fig(\ - \pi_1^{ns}ig) \end{aligned}$$



#### **Ghost Sector**

$$\mathcal{L}_{\bar{c}c} = -\mathrm{Tr} \Big[ \bar{c}_0 \delta_{_{BRST}} G_0 + \bar{c}_1 \delta_{_{BRST}} G_1 + \bar{c}_2 \delta_{_{BRST}} G_2 \Big]$$

where

$$\delta_{_{BRST}} W_{\mu j} = - \Big( \partial_{\mu} c_j + i g_j \, [ \ W_{\mu j} \ , \ c_j \ ] \, \Big)$$

$$egin{aligned} \delta_{_{BRST}}\pi_j &= rac{1}{2}fig(g_jc_j - g_{j+1}c_{j+1}ig) + rac{i}{2}\,[\,\,g_jc_j + g_{j+1}c_{j+1}\,\,,\,\pi_j\,\,] \ &- rac{1}{6f}ig[\,\,\pi_j\,\,,\,\,[\,\,\pi_j\,\,,\,\,g_jc_j - g_{j+1}c_{j+1}\,\,]\,\,ig] + \cdots \end{aligned}$$







- Feynman vs. Unitary gauge.
- Decoupling of heavy fields.
- Masses and mixings (LanHEP).
- Hermiticity (LanHEP).



Alexander Belyaev

## **Heavy fermions**



crucial ingredient of the model, in particular, provide unitarity

• but are too heavy to be observed even in strong pair production processes

## LHC reach for DY tri-lepton signature



Alexander Belyaev

"Collider Phenomenology of DEWSB models" Soton, July 7, 2010

## **EW precision data**

Fits to precision electroweak data also constrain the Higgs boson mass in the SM.



Alexander Belyaev

"Collider Phenomenology of DEWSB models" Soton, July 7, 2010