Overview

- The 4 subdetectors of the Muon system at SLHC
 - special problems of the MDT because of long drift time
 - reduced resolution because of space charge
 - efficiency because of BG hits
 - ✤ large data volume because of BG hits
 - high rate tests at the GIF facility
- Background levels at the SLHC
 - expected count rates in the MDT
- Options to solve the MDT bandwidth problem
 - **D** Better detector ?
 - Better electronics ?
 - **D** Better use of available information (Selective Readout) ?

1

• Rad-tol problems of electronics and services

Problems of the Muon-system with higher BG

- MDTs are most exposed to accumulation of BG hits because of long drift time (30 BC) → R&D starting (MDT were not designed for operation at large BG)
- test at high BG done at GIF facility to test spacial resolution & efficiency → next slides
- problem: the required readout BW may exceed link capacity
- CSCs most exposed w.r.t. local rate \rightarrow R&D starting
- TGC-forward very exposed, probably needs new technology
 → R&D starting
- RPCs are probably OK, as Barrel region is relatively cool
- I will concentrate in this talk on the problems of the MDT system

4

The MDT R/O scheme

Testbeam results of full MDT readout chain

Spatial resol. of MDT tubes as a function of impact radius and background irrad. in the GIF:

- dependence on r due to non-linear r-t relation, as expected
- dependence on background rate due to space charge
- slewing correction gives significant improvement
- performance is mainly limited by physical effects

Measured at the CERN-GIF facility by O. Kortner et al.

Other considerations about max. data rate

- reducing the deadtime of the ASD 750→200 ns improves efficiency at high hit rates substantially (O.Kortner er al.)
- increases data volume by a factor 2-3 !

7

Is the MDT readout ready for SLHC?

Lessons from the GIF test:

- position resolution degrades *moderately* at high BG rates
- efficiency degradation is a serious problem and calls for shorter dead time → increases data volume by about 2

Test not meaningful for rate capability, as tests were done at only ~ 1 kHz trigger rate

- \rightarrow Evaluate BG rates at LHC and SLHC
- \rightarrow Analyze BW-limitations in the MDT readout chain

8

Calculations for LHC by Rad. Task Force

(M. Shupe et al.)

Calculated count rates per tube

(Numbers include a safety factor of 5.)

Example of the "hottest" chamber (Small Wheel) in the MDT system with 230 kHz at 5 x nominal LHC:

- for each LVL1 trigger the hits are collected during 1,2 μs: at 230 kHz hit rate/tube this gives 0,28 recorded hits per LVL1 (= 27% ocupancy). This is the highest in any chamber at 5 x LHC.
- \rightarrow 28k recorded hits/s at the nominal 100kHz LVL1 rate
- a MDT with 300 tubes thus records 8.3 M hit/s
- Each hit is represented by a 32 bit word + 10% overhead, so 290 Mbit/s are sent to the DAQ by this chamber
- the Gbit link has a useable BW of about 1,2 Gbit/s, so the 290 Mbit/s correspond to a saturation of the link of about 24%, which is OK

Summary of expected Hit and Bit rates for MDTs

<u>hit-rates per tube in kHz</u>	L	.HC	SLHC =	10 x LHC	
MDT region	nom.	safty f. 5	nom.	safty f. 5	• tubes/chamb : 300
cool (Barrel, EO) medium (mid BW, outer SW) hot (inner BW/SW)	15 33 46	75 165 230	150 330 460	750 1650 2300	 sensitive time: 1,2 μsec LVL1 rate 100 kHz
hit rate per chamber in MHz					• avg. # bits/hit: 32 + 10%
cool (Barrel, EO) medium (mid BW, outer SW) hot (inner BW/SW)	0,5 1,2 1,7	2,7 5,9 8,3	5,4 11,9 16,6	27,0 59,4 82,8	• userui Bw. 1,2 Goit/s
Data rate per ch. in Mbit/sec					
cool (Barrel, EO) medium (mid BW, outer SW) hot (inner BW/SW)	19 42 58	95 209 291	190 418 583	950 2091 2915	
saturation of BW					

cool (Barrel, EO)
medium (mid BW, outer SW)
hot (inner BW/SW)

1,6%	7,9%	15,8%	79,2%
3,5%	17,4%	34,8%	174,2%
4,9%	24,3%	48,6%	242,9%

 \rightarrow Bandwidth of present MDT readout system is not sufficient for SLHC, even not at a safety factor < 5

12

MDT data volume & bandwidth per chamber

Options to solve the BW problem

Option 1: new MDTs from smaller tubes

If tube diameter was e.g. 50% of the present value:

- 50% of the background rate ٠
- 50% of the background rate
~ 20% of the drift time (non-lin. r-t relation) \rightarrow 10% data vol. ٠
- can put more tubes along the track \rightarrow improved pattern recognition ٠
- \rightarrow this is the ideal solution BUT:
- more electronics channels, new mech. & electr. services \rightarrow R&D, ٠ manpower, time, money
- this affects about 15-20% of the MDT EC chambers: not a small • project

The existing MDT chambers were not built with extremely high rates in mind. The diameter of 30 mm was selected mainly for cost reasons.

Option 2: increase BW of the entire R/O by about a factor 5 (brute force)

- new TDC with more storage, higher R/O bandwidth
- new CSM with more storage capacity, more processing power
- new optical links with higher bandwidth
- need faster MRODs with more storage
- need new ROBs with more storage, etc.
- need more processing power & BW for the LVL2 system
- → can be done, but not 'elegant'; requires big changes also for the offdetector elx; cost is hard to evaluate

\rightarrow Why transfer 100% of the data, if only ~1% will be used?

Option 3: selective readout of MDTs

- unlike e.g. the ID, the muon detector is very poor in tracks
- even at full LHC luminosity there are only about 1,5 muon tracks retained in any given event (i.e. 1,5 RoI sent to the LVL1).
 - □ → only about < 10 chambers have "useful tracks" = tracks above ~ 6 GeV, while about 1190 chambers have only BG hits
 - this fact is "known" early in the event, because no RoI is assigned to an empty chamber
 - the MuCTPI collects the RoI info and forwards it to the LVL2
 - the LVL2 rejects/confirms the muon trigger solely on the basis of the RoIs & never looks at chambers without RoI.
 Only data corresponding to a RoI are later written to tape
- a generous readout scheme reading the MDTs in the RoI plus adjacent ones would still reduce the data volume by a factor > 10
- Once the data volume reduced, optical links, MRODs, ROBs and LVL2 could remain unchanged
- only ON-chamber elx, TDC and CSM would need modification

MDT data volume & bandwidth per chamber

RoI info provided by the Muon trigger system

Example: Format of the input data to the MuCTPI (Endcap part of the TGC)

\square	\mathbb{N}	E	BCIE	C				Pt 1			Pt 2		02		Rol 2					01			Rol 1							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

- from the RoI the location and coarse momentum of the track can be derived
 - □ location: sector and subsector (RoI 1, RoI 2)
 - momentum: which of the 6 p_T -thresholds was passed (Pt 1, Pt 2)
 - □ there are flags for tracks passing close to sector boundaries (O1, O2)
- → the RoI unambiguously points to the chambers transversed by the track
- idea is to omit readout of those MDTs, to which no RoI is pointing
- this leads to a reduction of the data volume by a factor 50-100
 → opt. link, MROD and ROB see only a small data flow and will be less busy than at LHC

The fine granularity of the trigger sectors allows a 2-dim localization of the track candidate at the LVL2 level (example: TGC)

The RPCs in the barrel are segmented in a similar, less fine grained way.

March, 21st, 2007 ATLAS-CMS Electr. Workshop Muon Electr. ATLAS R. Richter

22

Data flow from trigger ch's to MUCTPI & CTP

March, 21st, 2007

ATLAS-CMS Electr. Workshop

Muon Electr. ATLAS R. Richter

23

A possible scheme for selective MDT readout

Summary on selective readout

(possible problems, requiring more study)

- boundary effects: as the field is not strictly toroidal, tracks may migrate to a chamber in an adjacent sector, which has no RoI. In this case a part of the track may be lost (Φ-migration of track)
 - solved by the MUCTPI inside an octant, but not among octants
 - make use of boundary flag in RoI word
 - simulation needed to look for possible track loss
- there is some latency for the LVL2: on reception of the RoI list, the LVL2 must wait until selected data arrive in the ROBs
- these studies being successful, selective readout seems the way to go (cost, labour, scope of total modifications)

Work to be done

- Need working group between TDAQ and MDT people to define:
 - simulation studies
 - * interface lines, data transfer, timing
 - prototype development
- MDT people to define specs for new TDC (needed independently of selective R/O)
 - increased storage capacity
 - technology
 - common development with other groups?
- MDT people to think about CSM upgrade
 - * new FPGA ?
 - interface to optical link (GBT ?)

Rad-tol issues

Muon system exposure to increased rad. levels at SLHC

- <u>Electronics on the MDT frontend</u>
 - □ most components only certified up to LHC levels., e.g.
 - ♦ VIRTEX-II FPGA \rightarrow is VIRTEX-IV more rad-tol ?
 - ♦ Toshiba gate-array (TDC) \rightarrow new design as a monolythic
 - ♦ ELMB → replace by GBT branch ?
- \rightarrow Similar problems for other subdetectors
- <u>All power supplies of the Muon system are in UX15 (about 1000 units)</u>
 - exact limit of tolerance not known, needs more testing
 - perhaps only exchange critical components, like
 - power MOSFETs?
 - CMOS processors?
- Rad-tol is common problem of SLHC. The best would be
 - a common approach among experiments and subdetectors
 - a strong involvement of ESS for techn. expertise and coordination

Summary

At SLHC background rates part of the MDTs need upgrade:

• decrease tube diameter or increased R/O bandwidth or • use selective R/O based on trigger chamber info • improve rad-tol of HV/LV power supplies R&D • 3 Expressions of Interest submitted to the ATLAS R&D •

Upgrade Committee

R&D	
R&D	
R&D	

Spares

Total neutron and photon flux -

Figure 4.18 The Atlas geometry in the FLUKA AV16 configuration, similar to "Aug01" GCALOR layout with previous JF concept: the picture represents a simple slice at a fixed phi angle. Horizontal axis gives Z in cm and the vertical axis R in cm. The old muon chambers positions have been kept for backward compatibility with earlier estimates.

> in the region of the BW-tip the γ -distribution does not correspond to the n-distribution \rightarrow 'prompt' γ 's from hadron showers created in the beampipe and shield are dominating **NOT** γ 's from conversions of thermal n's

Limitations of MDT elx at high hit rates

Track finding with LVL2

March, 21st, 2007 ATLAS-CMS Electr. Workshop

Option 3: selective readout of CSMs (2)

Strategy of the standard muon trigger (bird's eye view)

- each track of each BC is recognized by the trigger chambers and the η , ϕ coordinates sent to the MCTPI, specifying trigger threshold and trigger sector (μ -candidate \rightarrow RoI)
- on the basis of the muon and calorimeter RoIs the LVL1 decision is taken
- after a LVL1 the RoI info is sent from the MUCTPI to the LVL2 processor
- The LVL2 looks for muon tracks, guided (only) by the RoIs sent from the MUCTPI (\rightarrow an exception to this is B and J/ Ψ physics at low luminosity)
- The LVL2 constructs roads and determines a precise momentum of the track using the drift time info from the MDTs → rejecting low momentum fakes, fake double tracks, tracks with kinks, non-isolated tracks etc.

 \rightarrow It may be sufficient to **only** transfer data from **those MDTs** which lay in the relevant trigger sectors (+ neighbouring sectors, if track is close to a sector boundary)

Trigger rates and thresholds at LHC and

Different physics at the 3 luminosity stages: e.g. $J/\Psi \rightarrow \mu\mu$ only possible at stage I

t included

The MuCTPI

Possible R/O architecture

Option 3: is it safe enough?

Low p_T muons may be lost at η close to 1(transition region)

The convex track generates the LVL1 trigger (single $\mu > 6$ GeV)

The concave track from (e.g. $J/\Psi \rightarrow \mu\mu$) may be lost because of $p_T < 6$ GeV (most frequent) or because of missing the BM layer AND the EC trigger (rare). Situation may be recuperated in LVL2 on the basis of ID & TileCal data (s/w RoI).

 \rightarrow for low-lumi runs, reduction not possible. No selective R/O.

Summary of rates discussion

- Beryllium beampipe in EC toroid region leads to a substantial BG reduction.- Beyond this no additional BG reduction can be expected realistically.
 - Tungsten JT: little additional gain, high costs
 - Iron core toroids replacing the air core toroids: reduces BG by a factor 10, but will degrade p_T resolution and cost ~ 30-50 MCHF... ! (not a good idea)
 - ∗ moving the quadrupoles closer to the IR will cut into the JF shield → more BG expected. This is not yet simulated in detail (M. Shupe et al.).
- MDT readout may already be at the limit in some regions at LHC if the 200 ns dead time is used
- MDT upgrade for high rates should be pursued