Two Scenarios for the LHC Luminosity Upgrade

Walter Scandale, Frank Zimmermann

ACES workshop 19.03.2007

We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395)

outline

- beam parameters
- features, IR layout, merits and challenges of both scenarios
- beam-beam effect with transverse offset
- luminosity evolution
- bunch structures
- comments on S-LHCb
- Iuminosity leveling
- summary & recommendations

parameter	symbol	nominal	ultimate	12.5 ns, short
transverse emittance	ε [μm]	3.75	3.75	3.75
protons per bunch	$N_b [10^{11}]$	1.15	1.7	1.
bunch spacing	Δt [ns]	25	25	125
beam current	I [A]	0.58	0.86	1.2
longitudinal profile		Gauss	Gauss	Gauss
rms bunch length	σ_{z} [cm]	7.55	7.55	1.78
beta* at IP1&5	β* [m]	0.55	0.5	0.25
full crossing angle	θ _c [µrad]	285	315	445
Piwinski parameter	$\phi = \theta_c \sigma_z / (2 * \sigma_x *)$	0.64	0.75	0.75
peak luminosity	$L [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	1	2.3	9.2
peak events per crossing		19	44	88
initial lumi lifetime	$\tau_{L}[h]$	22	14	7.2
effective luminosity (T _{turnaround} =10 h)	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.46	0.91	2.7
	T _{run,opt} [h]	21.2	17.0	12.0
effective luminosity	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	0.56	1.15	3.6
$(T_{turnaround}=5 h)$	T _{run,opt} [h]	15.0	12.0	8.5
e-c heat SEY=1.4(1.3)	P [W/m]	1.07 (0.44)	1.04 (0.59)	3.34 (7.15)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.17	0.25	0.5
image current heat	P _{IC} [W/m]	0.15	0.33	1.8
gas-s. 100 h (10 h) τ_{b}	P _{gas} [W/m]	0.04 (0.38)	0.06 (0.56)	0.113 (1.13
extent luminous region	σ_{l} [cm]	4.5	4.3	2.1
comment				partial wire c.

baseline upgrade parameters 2001-2005

abandoned at LUMI'06

SR and image current

W. Scandale/F. Zimmermann, 13.02.2007 total heat far exceeds max. local cooling capacity of 2.4 W/m

parameter	symbol	25 ns, small β*	50 ns, long
transverse emittance	ε [μm]	3.75	3.75
protons per bunch	N _b [10 ¹¹]	1.7	4.9
bunch spacing	Δt [ns]	25	50
beam current	I [A]	0.86	1.22
longitudinal profile		Gauss	Flat
rms bunch length	σ_{z} [cm]	7.55	11.8
beta* at IP1&5	β* [m]	0.08	0.25
full crossing angle	θ_{c} [µrad]	0	381
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0	2.0
hourglass reduction		0.86	0.99
peak luminosity	$L [10^{34} \mathrm{cm}^{-2}\mathrm{s}^{-1}]$	15.5	10.7
peak events per crossing		294	403
initial lumi lifetime	$\tau_{L}[h]$	2.2	4.5
effective luminosity (T _{turnaround} =10 h)	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	2.4	2.5
	T _{run,opt} [h]	6.6	9.5
effective luminosity (T _{turnaround} =5 h)	L_{eff} [10 ³⁴ cm ⁻² s ⁻¹]	3.6	3.5
	T _{run,opt} [h]	4.6	6.7
e-c heat SEY=1.4(1.3)	P [W/m]	1.04 (0.59)	0.36 (0.1)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.25	0.36
image current heat	P _{IC} [W/m]	0.33	0.78
gas-s. 100 h (10 h) t _b	P _{gas} [W/m]	0.06 (0.56)	0.09 (0.9)
extent luminous region	σ_{l} [cm]	3.7	5.3
comment		D0 + crab (+ Q0)	wire comp.

two new upgrade scenarios

compromises between heat load and # pile up events for operation at beam-beam limit with alternating planes of crossing <u>at two IPs</u>, luminosity equation can be written as

where ΔQ_{bb} = total beam-beam tune shift (hourglass effect is neglected above)

25-ns low-β upgrade scenario

- stay with ultimate LHC beam (1.7x10¹¹ protons/bunch, 25 spacing)
- squeeze β* below ~10 cm in ATLAS & CMS
- add early-separation dipoles in detectors, one at ~ 3 m, the other at ~ 8 m from IP
- possibly also add quadrupole-doublet inside detector at ~13 m from IP
- and add crab cavities ($\phi_{Piwinski} \sim 0$), and/or shorten bunches with massive addt'l RF
 - \rightarrow new hardware inside ATLAS & CMS,
 - → first hadron-beam crab cavities

CMS & ATLAS IR layout for 25-ns option

25-ns scenario assessment (accelerator view point)

<u>merits:</u> negligible long-range collisions, no geometric luminosity loss, no increase in beam current beyond ultimate

<u>challenges:</u> D0 dipole deep inside detector (~3 m from IP), Q0 doublet inside detector (~13 m from IP), crab cavity for hadron beams (emittance growth), 4 parasitic collisions at 4-5σ separation, "chromatic beam-beam" Q'_{eff}~ $\sigma_z/(4\pi\beta^*\sigma_\delta)$, poor beam and luminosity lifetime ~ β^*

4 parasitic collisions at 4-5 σ offset in 25-ns low- β case

concerns:

- poor beam lifetime
- enhanced detector background

discouraging experience at RHIC, SPS, HERA and Tevatron

50-ns higher β* upgrade scenario

- double bunch spacing
- longer & more intense bunches with $\phi_{\text{Piwinski}} \sim 2$
- keep β*~25 cm (achieved by stronger low-β quads alone)
- do not add any elements inside detectors
- long-range beam-beam wire compensation
 → novel operating regime for hadron colliders

CMS & ATLAS IR layout for 50-ns option

l* = 22 m

long bunches & nonzero crossing angle & wire compensation

50-ns scenario assessment (accelerator view point)

merits:

no elements in detector, no crab cavities, lower chromaticity, less demand on IR quadrupoles (NbTi possible)

challenges:

operation with large Piwinski parameter unproven for hadron beams,

high bunch charge,

beam production and acceleration through SPS,

"chromatic beam-beam" $Q'_{eff} \sim \sigma_z / (4\pi\beta^*\sigma_\delta)$,

larger beam current,

wire compensation (almost etablished)

IP1& 5 event pile up for 25-ns and 50-ns spacing

old upgrade bunch structure

new upgrade bunch structures

S-LHCb collision parameters

parameter	symbol	25 ns, offset	25 ns, late collision	50 ns, satellites
collision spacing	T _{coll}	25 ns	25 ns	25 ns
protons per bunch	<i>N_b</i> [10 ¹¹]	1.7	1.7	4.9 & 0.3
longitudinal profile		Gaussian	Gaussian	flat
rms bunch length	σ _z [cm]	7.55	7.55	11.8
beta* at LHCb	β* [m]	0.08	3	3
rms beam size	σ _{x,y} * [μm]	6	40	40
rms divergence	σ _{x',y'} * [μrad]	80	13	13
full crossing angle	θ_{c} [urad]	550	180	180
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	3.3	0.18	0.28
peak luminosity	<i>L</i> [10 ³³ cm ⁻² s ⁻¹]	1.13	2.1	2.4
effective luminosity (5 h turnaround time)	L _{eff} [10 ³³ cm ⁻² s ⁻¹]	0.25	0.35	0.67
initial lumi lifetime	τ _L [h]	1.8	2.8	9
length of lum. region	σ _ι [cm]	1.6	5.3	8.0

rms length of luminous region:

$$\frac{1}{\sigma_l^2} \approx \left(\frac{2}{\sigma_z^2} + \frac{\theta_c^2}{2\sigma_{x,y}^{*2}}\right)$$

luminosity leveling in IP1&5

experiments prefer more constant luminosity, less pile up at the start of run, higher luminosity at end

how could we achieve this?

25-ns low-\beta scheme: dynamic β squeeze

Novel proposal under investigation Change the crossing angle G. Sterbini

 $\frac{50\text{-ns higher-}\beta \text{ scheme:}}{\text{dynamic }\beta \text{ squeeze, and/or}}$ $\frac{dynamic \text{ reduction in bunch length}}{(\text{less invasive})}$

leveling equations

events / Xing =
$$\frac{L_0 \sigma_{inel}}{n_b} \approx const$$
 $L =$

$$L = L_0 \approx const$$

$$N_0 - \frac{L_0 \sigma_{tot} n_{IP}}{n_b} t$$
 de

length of run

N =

average luminosity

$$t_{run} = \frac{\Delta N_{max} n_b}{L \sigma_{tot} n_{IP}} \qquad L_{ave} = \frac{L_0}{1 + \frac{L_0 \sigma_{tot} n_{IP}}{\Delta N_{max} n_b}} T_{turn-around}$$

	25 ns, low β*,	50 ns, long bunches,	
	with leveling	with leveling	
events/crossing	300	300	
run time	N/A	2.5 h	
av. luminosity	N/A	2.6x10 ³⁴ s ⁻¹ cm ⁻²	
events/crossing	150	150	
run time	2.5 h	14.8 h	
av. luminosity	2.6x10 ³⁴ s ⁻¹ cm ⁻²	2.9x10 ³⁴ s ⁻¹ cm ⁻²	
events/crossing	75	75	
run time	9.9 h	26.4 h	
av. luminosity	2.6x10 ³⁴ s ⁻¹ cm ⁻²	1.7x10 ³⁴ s ⁻¹ cm ⁻²	

F. Zimmermann, W. Scandale, 19.03.2007

assuming 5 h turn-around time

summary

- two scenarios of L~10³⁵ cm⁻²s⁻¹ for which heat load and #events/crossing are acceptable
- 25-ns option: pushes β*; requires slim magnets inside detector, crab cavities, & Nb₃Sn quadrupoles and/or Q0 doublet; attractive if total beam current is limited; transformed to a 50-ns spacing by keeping only 1/2 the number of bunches
- 50-ns option: has fewer longer bunches of higher charge; can be realized with NbTi technology if needed; compatible with LHCb; open issues are SPS & beam-beam effects at large Piwinski angle; luminosity leveling may be done via bunch length and via β*

recommendations

- luminosity leveling should be seriously considered: → higher quality events,
 - \rightarrow moderate decrease in average luminosity
- it seems long-bunch 50-ns option entails less risk and less uncertainties; however not w/o problems
- leaving the 25-ns option as back up until we have gained some experience with the real LHC may be wise

 needed for both scenarios are concrete optics solutions, beam-beam tracking studies, and beam-beam machine experiments