

CMS Upgrade Plans

Detector upgrade needs CMS Upgrade organization

CMS week Feb 07 AB

UXC: -z end fully open. HB+ ready to insert

Haven't quite Finished CMS Yet...

But planning to upgrade the bits not yet installed!

CMS from LHC to SLHC

The tracker is the key detector which will require upgrading for SLHC

I. Osborne

CMS Tracking System Up-date -January 07

TIB+ Inserted into TOB+ Seen from the - End

Peter Sharp CERN

CMS Tracker 2007 5

CMS Tracking System Up-date -February 07

The Aachen Team with TEC + End Cover Removed to show Silicon

Peter Sharp CERN

CMS Tracker 2007 6

Key issues for tracker upgrades

- Power
 - How to get current needed to the electronics
 - More complicated front ends will want more power
 - DC-DC converters, Serial powering
- Material Budget
 - Can we build a better/lighter tracker?

Tracker R&D focus

- Performance and detector layout
- Sensor material and operation
- Outer tracker readout system definition
- Pixel system and triggering
- Manufacture and material budget

Radiation environment for trackers

Except for the very innermost layers current technologies

should survive SLHC

L=2500fb-1, Fluence .vs. Radius

Radiation Dose in Inner Detectors

19 March 2007

Tracker occupancy

Do we want/need an analog or digital readout tracker? Higher granularity for inner layers needed

1	R (cm) <n<sub>ch>/cm²/12.5ns</n<sub>		<n<sub>ch>/ (1.28cm)²/12.5ns</n<sub>		
	8	2.41	3.94		
	11	1.47	2.41		
	14	0.97	1.59		
		L Nash ACES Workshop	A. Rose		

19 March 2007

Tracking with 500 min Bias events

B-Tagging

- Pile-up overlaps with High Pt event faking a displaced vertex
 - 12.5 ns dn^ch/d\eta/crossing ≈ 600 and ≈ 3000 tracks in tracker acceptance
 - 75 ns dn^{ch}/dη/crossing ≈ 3000 and ≈ 15000 tracks in tracker acceptance
- B-tag performance depends on
 - Vertex resolution
 - Luminosity/bunch crossing
 - Size of luminous region (how far apart are the min-bias events)
- For 75ns option expect 2-3 min-bias events within 200 µm of any interesting event.
 - Need simulation to understand how much this reduces b-tagging efficiency
 - All this pushes for larger area of Pixel coverage, need to look at pixel size as well

Exploit (weak) decay and production properties of b-hadrons:

- Lifetime of about 1.5 ps -> secondary (tertiary) decay vertex; displaced tracks
- High mass and decay multiplicity
- Hard b-quark fragmentation function
- Decay kinematics (e.g. rapidities)
- Semi-leptonic decays

- Level 1 Trigger rate to stay at maximum of 100 kHz
 - Raise p_T thresholds to reduce rates
- Latency doubled to 256 BX (6.4 μ sec)
 - Extra time needed for more complex algorithms
 - Correlating with tracker information at Level 1
 - ECAL is the limit
 - Don't plan to replace the front end electronics
 - New trackers would have to respect this limit
 - Can't keep TOB as is
 - Smaller feature sizes may help
- DAQ system needs to be re-designed with increased bandwidth to handle 10 times the data volume

- Why not use the inner tracking devices in the trigger?
 - Number of hits in tracking devices on each trigger is enormous
 - Impossible to get all the data out in order to form a trigger inside
 - How to correlate information internally in order to form segments?
- Possible topic requiring substantial R&D
 - "Stacked" pixels which can measure p_T of track segments locally
 - Two layers about 1mm apart that could communicate

Implementing stacked layers

• Single stacked layer gives a Pt cut

Other ideas for Level 1 input

- Alternative idea (F. Palla) pattern recognition in sectors (ala CDF)
- Pixel System for radii at 34, 42, 50 cm
 - Silicon strips (actual) have sensor element area of 10 to 15 mm²
 - 10 fold increase in the luminosity would need a 10 fold decrease of it
 - Large elongated pixels of 200 µm x 5 mm
 - Sensor area 6 (r- ϕ) x 12 (z) cm²
 - 3 4 fibers/module for 5 Gbps

Layer No.	Radius (cm)	Hit/module/b x ^a	No. detectors in ϕ	Hits/sector/b x ^a	Data rate*/module (Gbps)	Data rate*/sector (Gbps)	No. data links†/layer
1	26	3.1	82	43	5	69	1100
2	34	8.7	36	78	14	125	900
3	42	5.8	44	49	8	78	700
4	50	3.7	52	34	6	55	600

Calorimeters

- ECAL
 - Barrel and endcap crystals and electronics designed to operate in SLHC conditions
 - Electronics for barrel is not accessible without disassembly of the barrel
 - Electronics on the Endcap could be accessed in principle, but the activation may make this difficult
- HCAL
 - Scintillator may suffer damage for $\eta > 2$
 - R & D required
 - Finer granularity
 - HF some very high η towers lost
 - HF and shielding system issues with new insertion
 - Potential large additional cost

CMS HCALs

60% of light during LHC, down to 4% of original after 10 years of SLHC. Tower 2 down to 23% after 10 years of SLHC. SLHC "kills" a few high eta

Calorimeters/Muons

- ECAL
 - Crystal calorimeter electronics designed to operate in SLHC conditions
 - VPT in Endcap and Endcap crystals themselves may darken at SLHC
 - Very difficult to replace
- HCAL
 - HF may be blocked by potential changes to the interaction region
 - This has a direct impact mainly in the case of looking for WW scattering
- Both Calorimeters suffer degraded resolution at SLHC
 - affects electron ID, Jet resolutions
 - MUON
 - system front end electronics look fairly robust at SLHC
 - Cathode Strip Chambers/RPC Forward : Drift Tubes /RPC Barrel
 - Trigger electronics for the muon systems would most likely need to be replaced/updated
 - Some Electronics is "less" radiation hard (FPGA)
 - Coping with higher rate/different bunch crossing frequency
 - May have to limit coverage in η ($\eta > 2$) due to radiation splash
 - This effect will be known better after first data taking, potential additional cost of
- 19 March 2007 chamber replacement J. Nash ACES Workshop

CMS IP Upgrade

Triplet moves closer to IP C.M.S PARAMETERS Longitudinal View - Field BY 1843 1805 15/5/3 19/37 18/52 12/2/2 THIN Û. . 63 September 2006 DD&JB 4T FIELD ON Dipole inside end disks

- SLHC Upgrade Steering Group formed in 2005
 - http://cmsdoc.cern.ch/cms/electronics/html/elec_web/common/slhc.html
- This group is charged with
 - Recommending R&D proposals for approval to CMS MB/CB
 - Planning SLHC workshops
 - Outreach to collaboration
 - Interaction/Co-ordination with Machine and ATLAS on SLHC matters
 - Regular Reporting to Management Board/CB
- R&D Proposals get a stamp of CMS approval before going to funding agencies
 - Reviewed by SG

- Four workshops held over the past 3 years
 - <u>http://agenda.cern.ch/fullAgenda.php?ida=a036368</u>
 - <u>http://agenda.cern.ch/fullAgenda.php?ida=a041379</u>
 - <u>http://indico.cern.ch/conferenceDisplay.py?confId=a053123</u>
 - http://indico.cern.ch/conferenceDisplay.py?confId=a06865
- Establish requirements for upgrades of subdetectors
- Identify R&D needed for upgrades
- Prepare potential upgrade concepts
- Additional workshops within tracker community
 - http://indico.cern.ch/conferenceDisplay.py?confId=6904
 - http://indico.cern.ch/conferenceDisplay.py?confId=12094

- Within 5 years of LHC start
 - New layers within the volume of the current Pixel tracker which incorporate some tracking information for Level 1 Trigger
 - Room within the current envelope for additional layers
 - Possibly replace existing layers
 - "Pathfinder" for full tracking trigger
 - Proof of principle, prototype for larger system
 - Elements of new Level 1 trigger
 - Utilize the new tracking information
 - Correlation between systems
- Upgrade to full new tracker system by SLHC (8-10 years from LHC Startup)
 - Includes full upgrade to trigger system

Ideas on a new tracker concept?

- Strawman A much larger pixel tracker, some triggering layers, more segmented strips
 - 10 cm layer with *current* pixels (500 ChF/cm²)
 - Around 1m²
 - 20/40/60 cm layers with bigger pixels (100 Chf/cm²)
 - around 25 m^2
 - 25 MChf
 - Outer layers long pixels/short strips (30 Chf/cm²)
 - Around 170 m²
 - 50 MChf
 - Some triggering layers.
 - 1 layer for Pt cut only or 2 layers to measure Pt
 - Or perhaps full scale hardware pattern recognition?
- This is the at the limit of affordability How much can we re-use?
 - Can we use the TOB mechanical structures (a copy at least)
 - Can we re-use services
 - Re-use of some of the TOB at least the concept if not the actual modules

SLHC R&D:Next steps

CMS

- Expression of Interest
 - Reasonably brief document (40 pages)
 - Brief case for upgrade
 - Outlines scope of upgrade work
 - What detectors/Timescale
 - Submitted to LHCC March 2007
 - Prepare funding agencies
- Letter of Intent
 - A larger document
 - More complete physics case
 - Includes organization and rough costings of detector work
 - Including how CMS will organize the effort
 - Submitted to LHCC
 - Allow funding agencies to "release" funding
 - Target Summer 2008

Expression of Interest in the

CERN/LHCC 2006-XXX

CMS EOI xxx

dd month 2006

SLHC

CMSxxx Projects update below !!!					
CMS Spalespenson	Michel Della Negra, CERN	Michel.Della.Negra@cern.ch			
CMS Technical Coordinator	Austin Ball, CERN	Austin.Ball@cern.ch			
CMS Callaboration Tourd Chair	Lorenzo Fos, Pisa	Lorenzo.Fos@cern.ch			

CMS Detector Replacements

Inner Tracker	30 MChf
Outer Tracker	90 MChf
Level 1 Trigger	20 MChf
DAQ	10 MChf
Other Front Ends	10 MChf
Infrastructure	15 MChf
Total	175 MChf

Across collaboration

Materials Cost for Collaboration (CORE)

~ 900 FTE

Some of the Identified R&D areas

- Pixel technology
 - Hybrid cheaper bonding
 - MAPS/SOI need an answer now if it can be used
- Geometry
 - How many different sensors
 - Layout of inner/outer pixels
- Triggering layers
 - How many/Where
- Readout
 - Current ROC to 130 nm
 - New ROC to push Col hit info for stacks
 - Correlator Chip
- Link and Control technology
 - **GBT**?
 - Optical Links
 - Re-use of part of the plant?
- Radiation tolerance and robustness of 130nm/90nm
- Technology for a very inner layer
 - Different sensor
- Power/Material
 - DC-DC/Serial power

Conclusions

- CMS at SLHC Upgrade largely driven by tracker requirements
 - Higher granularity
 - Potentially substantially larger pixel detector
 - We may also need to understand how to form tracks with these detectors at 40 (20) MHz as input to the Level 1
- Trigger system will need replacement
- R&D required is substantial
 - Needs to start now
 - Needs to be focused
 - Important to converge on tracker design requirements
 - Need input from simulation/machine studies
- This workshop offers an opportunity to identify areas where we can collaborate while R&D is still in an early stage