Serial powering Marc Weber, RAL

Common ATLAS CMS Electronics Workshop for SLHC

What is SP? Why is it needed?

Experimental results and why is SP not noisy?

AC-coupling

Risk analysis and over-current protection

Power efficiency; SP real estate

SMARP: a general-purpose custom SP chip for ATLAS and CMS; strip and pixels

How does SP work?

Four elements

- 1. Current source (external power supply)
- 2. Shunt regulator and power device (digital power)
- 3. Linear regulator (for analog power)
- 4. AC or opto-coupling of signals

Need to get custom, rad-hard versions of 2. to 4.

Regulators

Chain of modules at different voltages; "recycle" current

Chips on a module are connected in parallel (as usual)

analog ground, digital ground and HV ground are tied together for each module (as usual) ⇔ floating HV supplies

All but one module are on different potential than DAQ

LVDS buffers are at the potential of the receiving unit (DAQ power for data; module power for clock/control)

Opto-decoupling is an alternative (in practice difficult)

Why independent powering fails at SLHC ?

Chip voltage goes down, current stays the same; more channels

- 1. Don't get 5 or 10 times more cables in
- 2. Power efficiency is too low (50% ATLAS SCT $\Leftrightarrow \sim 15\%$ SLHC)
- 3. Cable material budget: 0.2% of R.L. per layer (barrel normal incidence) ⇔ 1% or 2% SLHC
- 4. Packaging constraints

Each reason by itself is probably sufficient for a No-No

History

Idea is old, but was only seriously considered a couple of years ago First pioneering work was done by Bonn group for pixels

T. Stockmanns, P. Fischer, F. Hugging, I. Peric, O. Runolfsson, N. Wermes, "Serial powering of pixel modules", Nucl. Instr. & Meth. A511 (2003) 174–179; D. B. Ta, T. Stockmanns, F. Hügging, P. Fischer, J. Grosse-Knetter, Ö. Runolfsson, N. Wermes, "Serial Powering: Proof of Principle demonstration of a scheme for the operation of a large pixel detector at the LHC", Nucl. Instr. Meth. A557 (2006) 445-459

RAL picked it up 2 years ago for strips

Marc Weber, Giulio Villani, Mika Lammentausta, Proceedings of the 11th workshop on electronics for LHC and future experiments, CERN-LHCC-2005-038, (2005) pp. 214-217; Marc Weber, Giulio Villani, "Serial Powering of Silicon Strip Detectors at SLHC", Proceedings of the 6th "Hiroshima" conference on Silicon detectors (2006); Carl Haber, "A Study of Large Area Integrated Silicon Tracking Elements for the LHC Luminosity Upgrade", Proceedings of the 6th "Hiroshima" conference on Silicon detectors (2006).

Initially main concern was noise; focus moving to system aspects now; reliability; ASIC specs and design

Six serially powered ATLAS pixel modules

M. Cristinziani, Bonn U.

Serial Powering R&D for pixels

Serial powering of six ATLAS SCT modules

RAL clean room. This was also used for QA of ~800 SCT modules

Noise performance of 6 SCT modules

For more details see my talk at the "Hiroshima" conference STD6

Conclusion is valid for all channels

Gain does not change either

Created noise sources by various means: current injection at different frequencies; HV off for 1 module; increased threshold for 1 module

⇔ SP circuitry copes nicely with it

Figure 3. Average noise (ENC) for six SCT modules powered independently (IP) or in series (SP). The modules were run for more than 24h before collecting the data shown. The statistical precision of the data points varies between 1.3 and 5 e.

Precise measurements; noise performance of SP is excellent

Implement SP on densely packed supermodule

For more details see Carl Haber's talk at the "Hiroshima" conference STD6

Testbed for electrical system design; allows search for noise sources and study G+S issues in challenging packaging arrangement

LBNL SP supermodule with 6 hybrids (no sensors)

same LBNL SP supermodule with 5 hybrids and 1 module

- supermodule is electrically functional and noise performance is promising
- This is part of our work program for the next few months

Why is there no conductive interference (noise) between modules?

- What about **current fluctuations**?
 - a) modules cannot sink current, current is conserved \Leftrightarrow no problem

(shunt regulators can cope with current fluctuations under normal conditions)

• What about **voltage fluctuations**?

a) IR drops are minimum (since current is constant) ⇔ no damage to regulators, minimum pick-up from power lines

b) Module voltage fluctuations do not influence neighbouring modules since voltages are derived by local shunt regulators

SP systems tend to be intrinsically quiet; issue of different grounds in a dense environment is being studied by stave program¹²

AC – coupling of signals

AC LVDS coupling

Tested AC LVDS coupling with dedicated test circuits for large range of duty cycles and frequencies

120 MHz

40 MHz

This works just fine, not only for DC balanced protocol

works for multi-drop bus cables on staves as well

We are currently studying this in more detail

Risk due to broken connections: IP vs SP

SP: one broken connection loses n modules,

however much less cables (factor 2n less) and less connections

n

n

modules

n

Risk := (# of power connections) x (probability of a failure) x (# of modules lost per failure)

Risk ratio ~ number of modules/4

SP is more risky than IP, but not by much. Risk is manageable if connections are made robust (exploiting the huge real estate gains of SP

Overcurrent protection

Power transistor is weak point of SR in case of module failure

PT carries full current in case of module open ⇔ risk of burn out if not cooled properly

Protect against this by automatically reducing SR voltage in case of overcurrent condition \Leftrightarrow same idea can be used to set module into "stand-by" mode

Demonstrator board with discrete components performs as simulated

⇔ voltage reduction from4V to 1 V while standingfull current (~1.5 A)

Overcurrent protection measurements

Basic test of the idea using discrete component circuits

Test results:

"Stand-by mode" if over-current

voltage decreases from 4V to 1V within 3 ms

due to current increase from 40 mA to 1.5 A

Power efficiency

Consider n modules with module current and voltages I and V, off-detector cable resistance R, DC-DC gain g, define x= IR/V

- power consumed by n modules is always: n I V
- power wasted in the cable depends on powering scheme
- Low V is bad, large R and I are bad

	I _{sm}	V _{drop}	V _{sm}	P _{cab}	Efficiency:	considers cable losses only
					P _{sm} /P _{total}	for now
IP	n I	I R	V	n I ² R	1/[1 + x]	
РР	n I	n I R	V	n ² I ² R	1/[1 + nx]	
SP	Ι	I R	nV	I ² R	1/[1 + x/n]	SP: want to have many
						modules in series
DC-	(n/g) I	(n/g) I	gV	$(n/g)^2$	$1/[1 + xn/g^2]$	modules in series
DC		R		I ² R		DC-DC: want to have few
20						modules in parallel

Regulator power

We performed a detailed breakdown of our power consumption of SP circuitry (these were made with a 4 ABCD chip hybrid)

- power consumed in PT is \sim (PS current module current)
- power consumed elsewhere is essentially constant

Regulator inefficiency

Same date presented as an inefficiency

- Note that operating current depends on digital current fluctuations
- PT inefficiency dominates for large fluctuations
- we measure 10% SP inefficiency
- Inefficiency of linear regulator (for analog power) is similar

Let's work out a powering example

here $V_{ABC-N} = 2.5 \text{ V}$; $I_H = 2.4 \text{ A}$; 20 hybrids; DC-DC gain = 20

SP: n=20; $I_{H} = I_{PS} = 2.4 \text{ A}$; $V_{PS} = nV_{ABC-N} = 50 \text{ V}$ Features: saves factor ~8 in power cables/length over SCT

DC-DC IP: n=1; g = 20; $I_{PS} = I_H/g = 0.12 \text{ A}$; $V_{PS} = gV_{ABC-N} = 50 \text{ V}$ Features: 2x more cables than SCT \Leftrightarrow problematic for strips

Power efficiency

Illustration of various cases:

SCT \Leftrightarrow 4V, 1.5 A, R= 4.5 $\Omega \Leftrightarrow$ x=1.14; IP $\Leftrightarrow \varepsilon = 47\%$ SLHC \Leftrightarrow 2.5V, 2.4 A, R= 4.5 $\Omega \Leftrightarrow$ x=4.3; SP (only cable losses) SLHC \Leftrightarrow 1.5V, 4 A, R= 4.5 $\Omega \Leftrightarrow$ x=12; SP (only cable losses) same but including SR power and LR power (extrapolated from our SCT measurements)

Real estate of SP circuitry

Current implementation:

38 x 9 mm² (this is a PCB for cost reasons)Built 6-module stave with this set-up which is working fine;no redundancy, protection or slow control features

Components	Current	Future	Comments	
	Commercial	Custom		
Resistor	15	<5	Integrated in ASICs	
Capacitor	10	<10		
SR (die)	1	1	2 with rodundancy	
PT (die	1			
LVDS (die)	3	1		
AR (die)	1	0	Included in ASICSs	

Future implementation:

2-3 ASICs, integrated resistors

Redundancy, protection and slow control features

Estimated real estate: <12x10 mm²

System design: slow control

For IP, we have get information on module voltage and current consumption at external power supply

This is not true for SP or PP DC-DC systems

It is desirable to implement a slow control system on SLHC silicon tracker modules ⇔ get rid of sense wires; need to control redundancy and protection features of the new powering circuitry remotely

Slow control for new power systems is not part of this talk, but needs attention. Same goes (at later stage) for design of power supplies

Architecture: single or parallel shunt regulator

Integrated (custom) SR used for Bonn pixel results External commercial SR, used for RAL silicon strip studies Both options work and choice is not obvious

M. Cristinziani, Bonn U.

Similar properties verified for the linear regulators

Proposal for design of multi-purpose SP chip

SMARP1 block diagram

Estimated die size: ~3x3 mm²

- Avoids matching problems between many parallel regulators
- Simplifies system and separates functions
- Allows for cheap MPW run for SMARP
 ⇔ reduce risk and accelerate powering R&D

We worked out detailed specs for SMARP1, excluding the slow control block

The linear regulator is optional and is integrated in the ATLAS ABC-Next The power transistor could be a separate die removing the high-power constraints

This is a general-purpose chip, which could be used for ATLAS and CMS; strips or pixels

SMARP regulator elements

- Specs are based on experience with vREF •
 commercial devices
- Design contains protection and slow control features plus LVDS buffer section for AC coupling (not shown here)
- The power transistor P2 could also be an external device (to decouple high and low power objects)
- Linear regulator is optional
- Additional redundancy is gained by placing 2 SMARPs in parallel

Sketch of a schematic using SMARP

30

Features of IP and alternative schemes

	IP	SP	DC-DC	Comment
Power efficiency	10-20%	60-80%	60-80%	Varies with I, n (SP); gain (DC-DC)
Local regulator inefficiency	0%	~10%	Don't know yet	This is without linear regulator for analog
number of power cables	4 per hybrid	Reduction by factor 2n	Reduction by factor 2n	n = number of hybrids
Voltage control over ind. hybrids	Yes On/Off; fine- adjustment	Stand-by mode: 2.5V/1.5V -> 0.7 V; Limited fine-adjustment	Yes On/Off; limited fine- adjustment	New schemes have regulators; no fine adjustment needed
Hybrid current info	Yes	Yes (sensing current through power device)	Yes	Some power penalty for DC-DC
Hybrid voltage info	Yes (need sense wires)	Yes	Yes	Not strictly needed, since regulators
Floating hybrid power supplies	Yes	No, voltage chain	No	
Protection features	Separate set of cables for each hybrid	Local over-current protection; redundant regulators	Don't know yet	Protect against open (SP) and short (DC- DC)

Let's preserve the good features of IP \Leftrightarrow have voltage control, current **monitoring, and protection features** \Leftrightarrow our specs do just that

Outlook

SP offers huge gains in power efficiency, cable and material budget It unusual to gain such significant factors in a technology as mature as silicon detectors

Various SP systems have been running since several years now; understanding of system properties is well advanced

Noise performance is excellent and we understand why; studies on staves are promising and most generic system tests will be completed this year

Next crucial step is to design a custom general-purpose ASIC (SMARP1); this should be a common ATLAS-CMS chip; it would be of interest for pixels and strips; it's prudent to start this effort soon

Appendix

Overcurrent protection measurements

Basic test of the idea using discrete component circuits

Recovery to nominal if current back to normal

voltage increase from 1V to 4V within 70 ms

due to current decrease from 1.5 A to 40 mA