System level requirements

for upgraded tracker

- CMS was designed for 10 years operation at L = 10³⁴ cm⁻².s⁻¹
 - ~20 events per beam crossing @ 40MHz
- To operate at L = 10³⁵ cm⁻².s⁻¹
 - ~400 events/10,000 particles per beam crossing @ 20MHz
- Rebuild tracking system requirements and challenges
 - Greater radiation tolerance
 - Higher granularity more pixels, and shorter strips
 - New electronic readout system
 - Take further advantage of DSM CMOS & higher speed optical links
 - Contain power budget and unit costs
 - Increase mass production and automation
 - Improve cooling performance
 - Reduce unnecessary mass

- Physics requirements
 - Not yet better defined than LHC and may be influenced by discoveries
 - Momentum measurement & spatial resolution precision, tracking efficiency not expected to reduce
 - Electron and muon track reconstruction will still be important
 - More energetic jets with more particles and higher track density
 - Rarer channels likely to be studied
 - Worse performance than LHC is not allowed, despite nature's challenge!
 - Higher granularity & less material will evidently help
- Operational lifetime
 - Not yet well defined and will depend on machine performance, budgetary constraints, difficulties of operating experiment in very new conditions - but may be longer than originally expected
 - Even if not true, inaccessibility for maintenance requires...
 - High reliability and quality of manufacture are essential

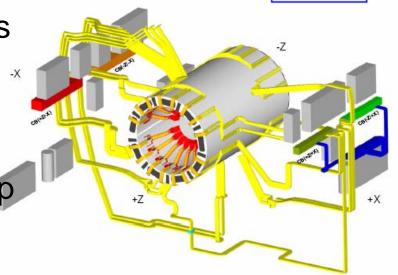
- Potential targets for beneficial features
 - Power reduction per channel
 - if possible better than scaled with input load
 - Increased testability, redundancy
 - Improved immunity to any radiation effects, especially SEU
 - Maintain data quality, under more challenging conditions
 - increased digital activity, lower noise targets for thin sensors,...
 - Qualification has been successful but it's always possible to improve
 - Much relies on users and small features always show up late
- Design for low power everywhere possible
 - Don't wait to be asked!
 - Some elegance in system design may need to be sacrificed...

Requirements from sensor issues

CMS Silicon microstrip tracker

- ~210 m² of silicon, 10M channels, 75000 FE chips, 40000 optical links
- Present silicon sensors main parameters
 - Substrate: <100>, n-type float-zone, phosphorus doped
 - p-side readout, AC coupled, with poly-Si bias resistors
- For LHC only one type of well understood sensor material and readout polarity
 - For SLHC not yet known if single material or sensor type will be used
 - Large scale manufacture requires substantial, experienced companies
 - Less mature technology feasible for limited innermost region?
- Front end electronic design can't as usual be decoupled from sensors
 - May need multiple FE chip variants (for a time..?)
 - Sensor specifications are a required input to electronic definition

Electronics


- Little doubt that advanced CMOS (0.13µm,...) will meet our requirements
 - What are the arguments for considering other processes?
- Total dose qualification is time consuming
 - 10 Mrad with x-ray machine ~1 day
 - Rate effects are difficult to study
- Effort in design required to mitigate Single Event effects
 - Access to suitable sources required (heavy ions vacuum, ~50MeV protons, ...)
- Expect issues at module level or with components
 - Handling issues, special tooling, time, etc..

Power budget & provision

TRACKER Services

- Tracker (& CMS) performance is adversely affected by material
 - Space for services is limited
 - Routes are complicated
- Reduction in currents would help
 - Increasing power budget will not make life easier

 Effort on power provision is mandatory before commitments are final

Space & cooling in control room & cavern is also limited
Increase in volume of off-detector electronics should be compensated by density
total power constraints will also not relax much

- 0.13µm CMOS ASIC prototyping of full size chips is significantly more expensive
 - Access is also possible via commercial MPW
 - Convenient & affordable for small chips
 - MPW sharing of single technology has advantages
 - Foundry access, shared experience, circuits/components,...
 - But drawbacks of less predictable schedules
- Production costs almost unchanged => lower in future real terms
- Potential cost conflict between trying new ideas and containing number of iterations of large chips
- However, optical link procurement was the major CMS cost driver
 - ATLAS & CMS approaches were different last time
 - In-house/commercial large number of links (analogue)/small number (binary)
- Clarification of link options and implications of common project

Mass production and automation

- CMS pioneered automated module assembly
 - Eventually very successful
 - 15000 in ~2 years

But

- Significant development time
 - Main hold-ups due to subtle component issues
- Many crucial, detailed, labour intensive tasks
- Testing and tooling requires development
- Ease of task depends on number of variants
 - System assembly, installation and commissioning much less adaptable to automation
- Desirable to reduce number of module types

- Increased cooling could be required for
 - Lower temperature operation for radiation mitigation/thermal runaway
 - Removing increased heat load
 - Mainly driven by sensors, and perhaps system requirements
- If either of these is required, more cooling power is necessary
 - But cooling is a significant contributor to material budget
 - So either reduce heat load, or improve engineering of cooling system
- Appraisal of required cooling and its impact
 - Desirable to compare performance of ATLAS (evaporative) vs CMS (conventional liquid) cooling schemes

- No non-essential material in tracker
 - but perhaps we could still do better in future

- May require to replace inner layers during lifetime
- Never too soon to think about power provision
- Ability to work in irradiated zone not yet clarified
 - Specialist tools and techniques to be developed

- Leave this for other speakers, as unique to CMS (I think)
- Tracker input to L1 trigger

Muon L1 Trigger rate at

 $L = 10^{34} \text{ cm}^{-2}.\text{s}^{-1}$

Note limited rejection power (slope) without tracker information

But (for CMS) tracking trigger should not degrade tracking performance...

- General requirements are clear. More details require iteration
 - Higher granularity & less material will evidently help
 - High reliability and quality of manufacture are essential
 - Qualification has been successful but it's always possible to improve
 - Design for low power everywhere possible
 - Sensor specifications are a required input to electronic definition
 - Effort in design required to mitigate Single Event effects
 - Effort on power provision is mandatory before commitments are final
 - Potential cost conflict between trying new ideas and containing number of iterations of large chips
 - Clarification of link options and implications of common project
 - Appraisal of required cooling and its impact