ATLAS trigger upgrade overview

- Requirements and constraints
- TDAQ architecture
- LVL1 issues
- TTC system
- HLT/DAQ issues
- Summary

Stefan Tapprogge

Institut für Physik

Common ATLAS CMS Electronics Workshop

March 21st 2007,

CERN

Physics requirements on TDAQ

• to exploit physics potential of SLHC, need

> triggers for discovery physics

 \circ (very) high $p_{\rm T}$ objects (thresholds increased wrt LHC) \circ as inclusive as possible (e.g. also inclusive W/Z selection)

→ triggers for precision measurements

• high p_T objects (with similar thresholds as for LHC) • use more exclusive / multi-object selection to control rate

> monitor and calibration triggers

 \circ low to high p_T thresholds (will be pre-scaled)

• conditions at 10³⁵ will impact trigger rates

> higher rate for fixed threshold and efficiency

- o trivial increase by corresponding increase in luminosity
- further increase due to less effective isolation criteria, increase in fake rate, ...

→ due to the 80 - 500 inelastic pp interactions per crossing

Example SLHC trigger menu

from hep-ph/0204087	LHC		SLHC	
Selection	Threshold	Rate	Threshold	Rate
	(GeV)	(kHz)	(GeV)	(kHz)
inclusive single muon	20	4	30	25
inclusive, isolated e/gamma	30	22	55	20†
muon pair	6	1	20	few
isolated e/gamma pair	20	5	30	5
inclusive jet	290	0.2	350	1
jet + missing ET	100+100	0.5	150+80	1-2
inclusive ET			150	<1
multi-jet triggers	various	0.4	various	low

Note that inclusive e/γ trigger dominates rate. ([†]Added degradation from pile-up not included above)

TDAQ upgrade parameter space

- upgrades of the trigger and DAQ system are influenced (driven) by several constraints and requirements, from
 - \rightarrow physics goals

 \circ objects, algorithms, p_T thresholds, ...

\rightarrow machine parameters

bunch crossing frequency,
 # of simultaneous inelastic pp interactions, ...

→ sub-detector changes

 number of channels, occupancy, signal formats for LVL1 (analog vs. digital), ...

→ technology evolution

• availability of performing commodity items, ...

Impact of luminosity upgrade

- increased radiation for on-detector trigger electronics
 - → permanent damage, single event upsets, ...
- change in the bunch crossing rate?
 - tight coupling of LVL1 to this quantity
 for 20/40 MHz scenario explore which parts could be kept ...
- changes in the detector signals available for LVL1?
 - more granular information (possibly better rejection)
 e.g. possibility of having digitized LAr cell information
- increased number of electronic channels
 - → larger bandwidth needs
- increased occupancies, pile-up noise, ...
 - → degradation of algorithm performance
 - o isolation cuts, fake objects, ...
 - → increased trigger rates
 - for fixed thresholds and efficiencies
 - → larger bandwidth needs

ATLAS TDAQ system architecture

• LVL1:

- \rightarrow synchronous
- Algorithms in firmware
- maximum
 latency of
 2.5 μs

• HLT:

- \rightarrow asynchronous
- Algorithms in software
- processing time
 of

• ~ 10 ms (LVL2)

- input: coarse calorimeter information, muon trigger chamber signals
- central trigger processor decision based on
 - \rightarrow multiplicities of (high) p_T objects and energy sums
- major challenge: data movement
 - very high density backplanes (fanout and data sharing)

LVL1 upgrade issues

- performance degradation of present algorithms
 - compensation by refined algorithms and/or more granular data
 - \rightarrow need for detailed full simulation studies

• technical challenge to handle 500 pile-up events

- number of p_T thresholds (sets) sufficient ?
- need for truly topological criteria to be used in LVL1 trigger decision?
- possible change in input signals from detector front-end electronics
 - > number of channels, analog vs. digital calorimeter data, ...

LVL1 upgrade issues (2)

- radiation tolerance of on-detector components
- maximum LVL1 accept rate
 - → keep present limit of maximum 100 kHz (?)
- maximum LVL1 latency
 - determined by sub-detector with smallest depth of pipeline memories
- bunch crossing frequency
 - → seem to be less critical (at least today)
- LVL1 upgrade impacts on
 - → front-end electronics

• if different bunch crossing frequency or LVL1 accept rate above 100 kHz

→ HLT/DAQ: bandwidth and processing needs

Custom backplanes for 9U boards with ~800 pins per board
 > preprocessor to cluster processor: 2000 Gbit/s (5000 links)

LVL1 calorimeter trigger status

- analog signal cables \rightarrow in USA15 • PPM: preprocessor
 - → digitize analog signals

Common ATLAS CMS Electronics Workshop, CERN, 21st March 2007

LVL1 calorimeter trigger status (2)

Common ATLAS CMS Electronics Workshop, CERN, 21st March 2007

- digital processor systems
 - → em/had and jet/energy sums
- central trigger processor (CTP)

LVL1 calorimeter trigger issues

- presently using analog energy sums (trigger towers) as input
 - > refined granularity?
 - reduce occupancy, better background rejection capability?
 - → use (digitized) cell information?
 - > need to perform quantitative study
 - need to consider issue of demands in data movement and fan-out

- preprocessor will only operate at 40 MHz
 - need to rebuild for shorter bunch crossing frequencies
 - same holds for processors (em/had (CP) & jets/energy sums (JEP))

LVL1 muon trigger scheme

Common ATLAS CMS Electronics Workshop, CERN, 21st March 2007

LVL1 muon trigger issues

- dependence on performance of trigger chambers
 - see talk by G. Mikenberg
 - understand
 situation with
 first collision data
- important issues
 - radiation tolerance
 - → background hits giving fake tracks
 (→ higher trigger rate)
 - o via accidental coincidences
 - restriction of pseudo-rapidity coverage shielding improvement

• possible improvements/extensions in functionality

- → distribute LVL1 trigger type with LVL1 accept
 o to allow for different readout schemes ?
- today not on the agenda anymore: how to cope with change in bunch crossing frequency?
 - → generate higher frequencies locally ?
 - modification of QPLL crystals on all FEE boards
 maybe not sufficient enough
 - replace by a system running at higher bunch crossing frequency

• with very good jitter performance (peak-to-peak) to drive next generation links

HLT and DAQ deployment

DAQ: present event size

Detector	Channels	Fragment size [kB]
Pixels	1.4*10 ⁸	60
SCT	6.2 *10 ⁶	110
TRT	3. 7*10 ⁵	307
LAr	1.8*10 ⁵	576
Tile	104	48
MDT	3. 7*10 ⁵	154
CSC	6. 7*10 ⁴	256
RPC	3. 5*10 ⁵	12
TGC	4.4*10 ⁵	6
LVL1		28

 custom made buffer card ROBIN

• 153 ROS systems installed (with 4 ROBIN's each)

total event size of about 1.5 MB

HLT/DAQ overview and issues

- HLT and DAQ mostly using commodity components
 - → processors, network, ...
 - In one custom component: readout buffer (RoBIn) to store fragments after LVL1 accept
- HLT and DAQ to first order not influenced by value of bunch crossing frequency
 - → buffers see only fraction of full event data (at full rate)
 - > processor see only fraction of events (partially at full size)
- expect further technology advances to fulfill the needs
 - > R&D effort on data links, readout buffer and algorithms
- demands on processing power depends also on occupancy and other factors
 - → compensate (partially) by increase in CPU capacity (Moore's law)

HLT/DAQ upgrade issues (cont'd)

- performance of selection algorithms will degrade
 - \rightarrow in addition: if more powerful algorithms at LVL1
 - ${\rm o}$ possibly less rejection capability at HLT
 - part of the fake/background signatures are gone already
- how can better (tracking?) performance of an upgraded detector be utilized in the HLT?
 - already presently very good online selection expected
 e.g. <50% of fake electrons in the inclusive electron trigger
- data links (FEE to DAQ/trigger)
 - higher bandwidth needs, radiation effects
- networks
 - influence amount of data movement to HLT processors
 - → increased demand for networking bandwidth
 - again due to higher occupancies (and channel counts)
- Readout-Subsystem (ROS)
 - → operate already at highest rates
 - o further increase of (internal) bandwidth demands expected

Summary

- TDAQ system depends strongly on several external parameter (areas)
 - → upgrade (and R&D) needs to be defined iteratively
- still need for R&D on non-custom components (e.g. LVL1)
 - \rightarrow using advances in FPGA's and memories
- further progress in commodity components (driven by mass markets) should allow to address some of the issues
 - increased need for data transfer and data processing
- need to ensure to have an even more flexible system
 - → and handle its even further increased complexity
- need experience / measurements from first pp collisions
 - validate MC rate estimates for background processes (fakes)
 - normalize cavern background simulations (muon trigger)