DAQ upgrades at SLHC S. Cittolin CERN/CMS, 22/03/07

DAQ architecture. TDR-2003 DAQ evolution and upgrades

rameters

- lision rate el-1 Maximum trigger rate erage event size a production
- 40 MHz 100 kHz ≈ 1 Mbyte

≈ Tbyte/day

TDR design implementation

No. of In-Out units Readout network bandwidth Event filter computing power No. of PC motherboards

512

- ≈ 1 Terabit/s
- ≈ 10⁶ SI95
- ≈ Thousands

PS:1970-80: Minicomputers

Readout custom design First standard: CAMAC • **kByte/s**

LEP:1980-90: Microprocessors

HEP standards (Fastbus) Embedded CPU, Industry standards (VME) • **MByte/s**

LHC: 200X: Networks/Grids

IT commodities, PC, Clusters Internet, Web, etc. • **GByte/s**

- Same level 1 trigger rate, 20 MHz crossing, higher occupancy.. A factor 10 (or more) in readout bandwidth, processing, storage
- Factor 10 will come with technology. Architecture has to exploit it New digitizers needed (and a new detector-DAQ interface) Need for more flexibility in handling the event data and operating the experiment

http://www.force10networks.com/products/reports.asp

is a photograph of the configuration used to test the performance and resiliency metrics of the Force10 le E-Series. During the tests, the Force10 TeraScale E-Series demonstrated 1 billion packets per second hput, making it the world's first Terabit switch/router, and ZERO packet loss hitless fail-over c speeds. The configuration required 96 Gigabit Ethernet and eight 10 Gigabit Ethernet ports f

LHC-DAQ: trigger loop & data flow

LIIC-DAG. event description

SLIIC. event nanuling

Another step toward uniform network architecture:

•All DAQ sub-systems (FED-FRL included) are interfaced to a single **multi-Terabit/s network**. The same network technology (e.g. ethernet) is used to **read and control** all DAQ nodes (FED,FRL, RU, BU, FU, eMS, DQM,...)

In addition to the Level-1 Accept and to the other synchronous commands, the Trigger&Event Manager-TTC transmits to the FEDs the complete event description such as he **event number, event type, orbit, BX and the event destination address** that is the processing system (CPU, Cluster, TIER..) where the event has to be built and analyzed....

- The event fragment delivery and therefore the **event building will be warranted by the network protocols** and (commercial) network internal resources (buffers, multi-path, network processors, etc.). FED-FU push/pull protocols can be employed...
- Real time buffers of Pbytes temporary storage disks will cover a **real-time interval of lays**, allowing to the event selection tasks a better exploitation of the available distributed processing power

33

ger synchronous data (20 MHz) (~ 100 bit/LV1)

distribution & Level 1 accept

commands (resets, orbit0, re-sync, switch context etc...)

parameters (e.g. trigger/readout type, Mask, etc.)

nt synchronous data packet (~ 1 Gb/s, few thousands bits/LV1)

t Number	64 bits as before local counters will be used to sychronize and check
time and BX No.	64 bits
Number	64 bits
t type	256 bits
t destination(s)	256 bits e.g. list of IP indexes (main EVB + DQMs)
t configuration	256 bits e.g. information for FU event builder
t fragment will contain the full e	vent description etc Events can be built in Push or Pull mode. E.g

d 2. will allow many TTC operations be done independently per TTC partition (e.g. local re-sych, reset, partial readout etc..)

nchronous control information

guration parameters (delays, registers, contexts, etc.) tenance commands, auto-test.

itional features? Readout control signal collector (a la TTS)?

replacement. Collect FED status (at LV1 rate from >1000 sources?) ct local information (e.g. statistics etc.) on demand? tenance commands, auto-test, statistics etc.

Q design

itecture: will be upgraded enhancing scalability and flexibility and exploiting aximum (by M+O) the commercial network and computing technologies. ware: configuring, controlling and monitoring a large set of heterogeneous distributed computing systems will continue to be a major issue

dware developments

eased performances and additional functionality's are required by the event handling (use standard protocols, perform selective actions etc.) ew timing, trigger and event info distribution system eneral front-end DAQ interface (for the new detector readout electronics) dling high level network protocols via commercial network cards

best DAQ R&D programme for the next years is the lementation of the 2003 DAQ-TDR

required a permanent contact between SLHC developers and LHC-DAQ ementors to understand and define the new systems scope, requirements specifications

