Trigger Hardware Development

Modular Trigger Processing Architecture

Matt Stettler, Magnus Hansen CERN Costas Foudas, Greg Iles, John Jones Imperial College

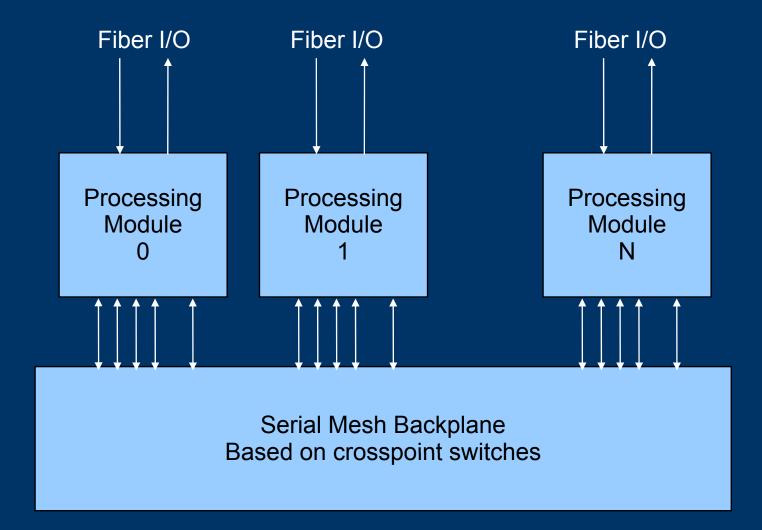
3/2007

Traditional Trigger Processors

- Generally pushed the state of the art
 - In speed and density
 - Large hardware designs
 - This will not change in the future
- Fully custom one-off systems
 - Complex and difficult to modify
 - Difficult to maintain over the life of the experiment
 - Designer's knowledge difficult to pass on
 - Lack clean internal interfaces
 - Modular to a degree, but based on ad-hoc bus schemes
 - Generally don't scale well
 - Dataflow defined by hardware architecture
 - Inflexible by design

Current Systems

- FPGA technology adopted rapidly
 - Current FPGAs have sufficient performance
 - Speed and density
 - Allow considerable flexibility in logic design
 - Very large devices available
 - Problem becomes physical concentration of data
- Dataflow is still hardware based
 - Some designs have used FPGAs as data routers
 - Inefficient at this task
 - Large number required increases design risk considerably
 - Many simply define the dataflow in hardware
 - Large parallel buses
- Large circuit boards required
 - Expensive to develop in both time and money

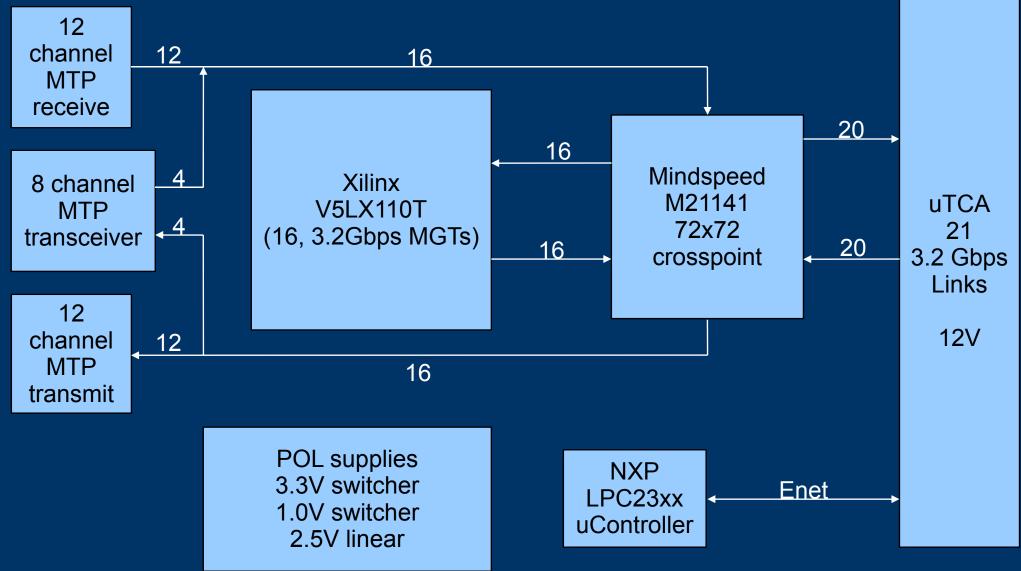

Desired Attributes for new Systems

- Modular
 - Reasonably fine grained
 - Smaller circuit boards
 - Easier and less expensive to develop
 - Should scale well
- Well defined internal interfaces
 - Allows modules to be developed independently
 - Perhaps shared across projects
 - At least electrically compatible
- Flexible in both logic and interconnect
 - Retain flexibility of FPGAs
 - Add complementary data routing flexibility
 - Modify data flow without altering hardware
 - Perhaps give the ability of dynamic reconfiguration

Relevant Current Technology

- Large FPGAs with built in SERDES links
 - Very high density logic
 - SERDES I/O allows physical concentration of data
 - 16-24 3+Gbps links available on large devices
 - Normal I/O pins support 1+Gbps links
- LVDS/CML crosspoint switches
 - Up to 144x144 non blocking matrices
 - Asynchronous, Protocol agnostic
 - Multi rate switching supported intrinsically
 - Currently available at 4+Gbps, 10Gbps announced
- Serial Memory becoming available
 - FBDIMM modules designed for server market
 - Support very large arrays (>100GB)
 - Electrically compatible with LVDS/CML

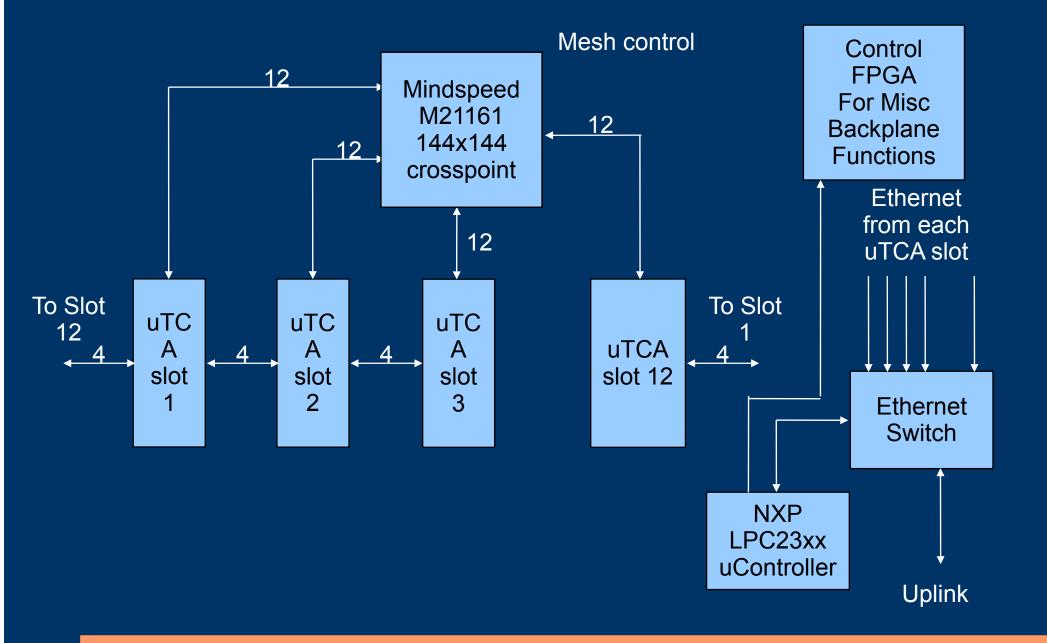
Proposal for CMS HCAL Muon and Quiet bit distribution


Implementation

- Proposed for CMS Global Calorimeter Trigger
 HCAL muon & quiet bit distribution
 - This system is ready for layout now
- Micro TCA based, 12 slot chassis
 - 20 high speed links per slot
- Processing module
 - Based on Xilinx V5LX110T
 - Mindspeed M21141 72x72 crosspoint
 - MFP Fiber interface (SNAP-12)
- Backplane
 - Commercial unit possible, but limiting
 - Custom unit based on Mindspeed M21161 144x144
 - Programmable topology
 - 500 Gbps maximum bandwidth

Micro TCA Crate/Backplane

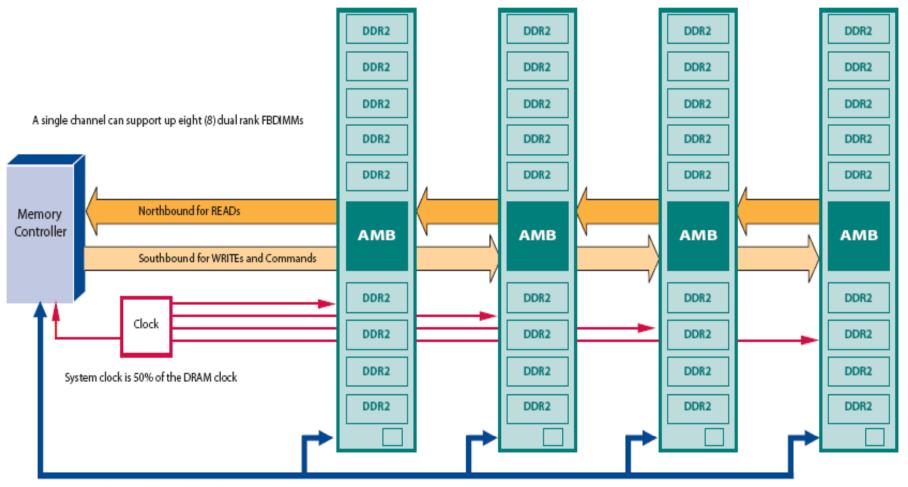
Processing module Block diagram



8

Key Features of Processing Module

- Xilinx Virtex 5LX110T FPGA
 - 16 low power MGTs, Superior logic density/speed
 - Standard I/O 1Gbps capable
- Data I/O direct from fiber
 - 16 channels full duplex @ 3.2 Gbps
 - Fiber utilized for inter-crate data links
 - Same fiber modules used on previous system
- Crosspoint routes to FPGA, backplane, and fiber
 - 1:N data replication supported at wire speed
 - FPGA output data sent to backplane or fiber
 - Data sharing between systems intrinsically supported
- Slow control via standard Ethernet
 - Based on NXP 23xx uController
 - Standard Ethernet protocols


Custom Backplane block diagram

Key Features of Custom Backplane

- Active backplane based on crosspoint switches
 - Mindspeed M21161
 - Active backplane eliminates congestion
 - uTCA Hub slots cannot support full mesh connections
- Programmable topology
 - Mesh, star, etc based on crosspoint configuration
- 20 links/slot for high speed data communication
 - M21161 supports 4.1Gbps data rate
 - System will be limited to 3.2 Gbps by FPGA/MFP Optics
- 1 link/slot for 100Mb Ethernet control interface
 - Star topology interface, switch IC on backplane
 - Backplane configuration via Ethernet also
 - Same uController as processing module

FBDIMM Architecture (future Interest)

Supports slow speed SMBus for each AMB

Key Features of FBDIMM

- Serial memory is designed for large blocks
 - Packet based logical model
 - Optimized for block transfers
- Utilize Advanced Memory Buffers (AMB)
 - Control local banks of DDR2 devices
 - Create daisy chain of banks
- Interface to host is via CML links
 - Currently working at 3.2 Gbps, eventually up to 9.6
 - Utilize 12-14 full duplex links
- Up to 8 AMBs can be daisy chained
 - Achieves 192GB with current technology
- Can be combined with serial mesh
 - Very large distributed memory arrays possible

Serial Link Latency

- Historically the limiting factor
 - Deserialization has dominated latency
 - This has improved with new FPGA families
- Current performance (Virtex5)
 - 10-12 byte clocks for receive
 - This is 2.5-3 40MHz clocks in our implementation
 - 5-7 byte clocks for transmit
 - 1-2 40MHz clocks
- Still significant
 - Biases FPGA choice to fewer large devices
 - Number of "hops" needs careful attention
- Crosspoints do not contribute to latency
 - Nearly wire speed (ps delay) insignificant
 - No serialization/deserialization