

CMS SLHC Trigger

Wesley H. Smith U. Wisconsin - Madison ATLAS-CMS SLHC Workshop March 21, 2007

Outline: Calorimeter Triggers Muon Triggers Tracking Triggers & Combinations

This talk is available on:

http://cmsdoc.cern.ch/cms/TRIDAS/tr/07/03/smith_trig_slhc_mar07.pdf

Overall Trigger & DAQ Architecture: 2 Levels:

SLHC Level-1 Trigger @ 10³⁵

Occupancy

- Degraded performance of algorithms
 - Electrons: reduced rejection at fixed efficiency from isolation
 - Muons: increased background rates from accidental coincidences
- Larger event size to be read out
 - New Tracker: higher channel count & occupancy → large factor
 - Reduces the max level-1 rate for fixed bandwidth readout.

Trigger Rates

- Try to hold max L1 rate at 100 kHz by increasing readout bandwidth
 - Avoid rebuilding front end electronics/readouts where possible
 - + Limits: (readout time) (< 10 μs) and data size (total now 1 MB)
 - Use buffers for increased latency for processing, not post-L1A
 - May need to increase L1 rate even with all improvements
 - Greater burden on DAQ
- Implies raising \textbf{E}_{T} thresholds on electrons, photons, muons, jets and use of less inclusive triggers
 - Need to compensate for larger interaction rate & degradation in algorithm
 performance due to occupancy

Radiation damage -- Increases for part of level-1 trigger located on detector

High-P_T discovery physics

- Not a big rate problem since high thresholds
- **Completion of LHC physics program**
 - Example: precise measurements of Higgs sector
 - Require low thresholds on leptons/photons/jets
 - Use more exclusive triggers since final states will be known

Control & Calibration triggers

- W, Z, Top events
- Low threshold but prescaled

ATLAS/CMS Studies in hep-ph/0204087: •inclusive single muon $p_T > 30$ GeV (rate ~ 25 kHz) •inclusive isolated $e/\gamma E_T > 55 \text{ GeV}$ (rate ~ 20 kHz) •isolated e/ γ pair E_T > 30 GeV (rate ~ 5 kHz) •or 2 different thresholds (i.e. 45 & 25 GeV) •muon pair $p_T > 20$ GeV (rate ~ few kHz?) •jet $E_T > 150$ GeV.AND. E_T (miss) > 80 GeV (rate ~ 1-2 kHz) •inclusive jet trigger $E_T > 350$ GeV (rate ~ 1 kHz) •inclusive E_T(miss) > 150 GeV (rate ~1 kHz); multi-jet trigger with thresholds determined by the affordable rate

Trig. Primitives: Calorimeter

- **HF:Quartz Fiber: Possibly replaced**
 - Already fairly robust
 - Modify logic to provide finer-grain information
 - Improves forward jet-tagging
- HCAL:Scintillator/Brass: Barrel stays but endcap partially replaced
 - Options: Quartz-fiber, PPAC's, si-sensors at highest η part of endcap
 - SIPMs under consideration to replace HPDs
 - TPG logic already sufficiently performant with full readout tower $\eta \times \phi$ resolution
- **ECAL: PBWO₄ Crystal: Stays**
 - TPG logic already sufficiently performant with 5 η × 5 ϕ towers summed in a single trigger tower (equals HCAL tower size).
 - Exclude on-detector electronics modifications for now -- difficult:
 - Regroup crystals to reduce $\Delta\eta$ tower size -- minor improvement
 - Additional fine-grain analysis of individual crystal data -- minor improvement
- **Conclusions:**
 - Front end logic same except where detector changes

- **Drift Tubes** (see talk by F. Loddo):
 - Can operate at 40 or 20 MHz with no problem (DT only in Barrel)
- **RPC** (see talk by F. Loddo):
 - Operate in the low η region with the same FE
 - Detector and FE upgrade is needed for $\eta > 1.6$ region
 - Trigger Electronics can operate with some modifications
 - Some front-end electronics may not be sufficiently radiation tolerant & may need replacement
- **CSCs** (see talk by D. Acosta):
 - CSCs in endcaps have demonstrated required radiation tolerance
 - Need additional ME4/2 layer recovered (planning for 2009-10)
 - Some elements of trigger & DAQ may need replacement to cope with high data rates
 - Some front-end electronics may not be sufficiently radiation tolerant & may need replacement

CMS SLHC L-1 Tracking Trigger

Additional Component at Level-1

- Actually, CMS could have a rudimentary L-1 Tracking Trigger
 - Pixel z-vertex in $\Delta\eta\times\Delta\phi$ bins can reject jets from pile-up
 - Cable not hooked up in final version
- SLHC Track Trigger could provide outer stub and inner track
 - Combine with cal at L-1 to reject π^0 electron candidates
 - Reject jets from other crossings by z-vertex
 - Reduce accidentals and wrong crossings in muon system
 - Provide sharp P_T threshold in muon trigger at high P_T
- Cal & Muon L-1 output needs granularity & info. to combine w/ tracking trig. Also need to produce hardware to make combinations

Move some HLT algorithms into L-1 or design new algorithms reflecting tracking trigger capabilities

- Local track clusters from jets used for 1st level trigger signal \rightarrow jet trigger with σ_z = 6mm!
- Program in Readout Chip track cluster multiplicity for trigger output signal
- Combine in Module Trigger Chip (MTC) 16 trig. signals & decide on module trigger output

CMS ideas for trigger-capable tracker modules -- very preliminary

- Use close spaced stacked pixel layers
- Geometrical p_T cut on data (e.g. ~ GeV):
- Angle (γ) of track bisecting sensor layers defines $p_{T} \iff window$
- ticle Count • For a stacked system (sepn. ~1mm), this [™]₀ is ~1 pixel
- Use simple coincidence in stacked sensor pair to find tracklets
- More details & implementation next slides

-- C. Foudas & J. Jones

Tangent-Point Reconstruction

Ω

- Assume IP r=0
- Angle α determines \textbf{p}_{T} of track

Smaller α = greater p_T

- Can find high-p_T tracks by looking for small angular separation of hits in the two layers
- Correlation is fairly 'pure' provided separation is small and pixel pitch is small

Matching hits tend to be from the same track

- If sensors are precisely aligned, column number for hit pixels in each layer can be compared
- Finding high-p_T tracks becomes a relatively simple difference analysis

W. Smith, U. Wisconsin, ATLAS-CMS SLHC Workshop March 21, 2007

Alternative Tracking Trigger: Associative Memories (from CDF SVX)

EventN

AMchipN

-- F. Palla, A. Annovi, et al.

W. Smith, U. Wisconsin, ATLAS-CMS SLHC Worksho

Challenge: input Bandwidth \Rightarrow divide the detector in thin ϕ sectors. Each AM searches in a small $\Delta \phi$

Estimate of L1 Trigger rate vs. p_T

- Assume very simple Tracker Trigger finding algorithm
 - No isolation required
- Correlate with estimated L1-Muon alone

- D. Acosta Combine with L1 μ trigger as is now done at HLT:

- Attach tracker hits to improve P_T assignment precision from 15% standalone muon measurement to 1.5% with the tracker
 - •Improves sign determination & provides vertex constraints
- •Find pixel tracks within cone around muon track and compute sum P_T as an isolation criterion
 - Less sensitive to pile-up than calorimetric information if primary vertex of hard-scattering can be determined (~100 vertices total at SLHC!)
- To do this requires $\eta \phi$ information on muons finer than the current 0.05–2.5°
 - •No problem, since both are already available at 0.0125 and 0.015°

CMS Muon Rate at $L = 10^{34}$

CMS SLHC e/γ/τ object clustering

 $e/\gamma/\tau$ objects cluster within a tower or two

- Crystal size is approximately Moliere radius
 - Trigger towers in ECAL Barrel contain 5x5 crystals
- 2 and 3 prong τ objects don't leak much beyond a TT
 - But, they deposit in HCAL also

W. Smith, U. Wisconsin, ATLAS-CMS SLHC Workshop March 21, 2007

CMS SLHC e / γ / τ object ⇔track correlation

Use e / γ / τ objects to seed tracker readout

- Track seed granularity $0.087\phi \ge 0.087\eta \Leftrightarrow 1 \ge 1$
- Track seed count limited by presorting candidates
 - e.g., Maximum of 32 objects?

Tracker correlation

Single track match in 3x3 with crude P_T (8-bit ~ 1 GeV)

......

- Electron (same for muons)
- Veto of high momentum tracks in 3x3
 - Photon
- Single or triple track match
 - Tau

τ-lepton trigger: isolation from pixel tracks outside signal cone & inside isolation cone

W. Smith, U. Wisconsin, ATLAS-CMS SLHC Workshop March 21, 2007

CMS SLHC Trigger - 20

Cluster jets using 2x2 primitives: 6x6, 8x8, 10x10

- Start from seeds of 2x2 E+H (position known to 1x1)
- Slide window at using 2x2 jet primitives
- E_T scale 10-bits, ~1 GeV

Jet Primitive is sum of E_T in E/HCAL

Provide choice of clustering

Current for LHC: TPG \Rightarrow RCT \Rightarrow GCT \Rightarrow GT

Proposed for SLHC (with tracking added): TPG \Rightarrow Clustering \Rightarrow Correlator \Rightarrow Selector

CMS SLHC Trigger Architecture

Level 1: Regional to Global Component to Global

SLHC Proposal:

- Combine Level-1 Trigger data between tracking, calorimeter & muon at Regional Level at finer granularity
- Transmit physics objects made from tracking, calorimeter & muon regional trigger data to global trigger
- Implication: perform some of tracking, isolation & other regional trigger functions in combinations between regional triggers
 - New "Regional" cross-detector trigger crates
- Leave present L1+ HLT structure intact (except latency)
 - No added levels --minimize impact on CMS readout

Present CMS Latency of 3.2 μsec = 128 crossings @ 40MHz

- Limitation from post-L1 buffer size of tracker & preshower
- Assume rebuild of tracking & preshower electronics will store more than this number of samples
- Do we need more?
 - Not all crossings used for trigger processing (70/128)
 - It's the cables!
 - Parts of trigger already using higher frequency
- How much more? Justification?
 - Combination with tracking logic
 - Increased algorithm complexity
 - Asynchronous links or FPGA-integrated deserialization require more latency
 - Finer result granularity may require more processing time
 - ECAL digital pipeline memory is 256 40 MHz samples = 6.4 μ sec
 - Propose this as CMS SLHC Level-1 Latency baseline

CMS SLHC L-1 Trigger Summary

Attempt to restrict upgrade to post-TPG electronics as much as possible where detectors are retained

- Only change where required -- evolutionary -- some possible pre-SLHC?
 - Inner pixel layer replacement is just one opportunity.

New Features:

- Level-1 Tracking Trigger
 - Inner pixel track & outer tracker stub
 - Reports "crude" P_T & multiplicity in ~ 0.1x 0.1 $\Delta \eta \times \Delta \phi$
- Regional Muon & Cal Triggers report in ~ 0.1 x 0.1 $\Delta \eta \times \Delta \phi$
- Regional Level-1 Tracking correlator
 - Separate systems for Muon & Cal Triggers
 - Separate crates covering $\Delta\eta\times\Delta\varphi$ regions
 - Sits between regional triggers & global trigger
- Latency of 6.4 μsec