Higgs pair production at the FCC-hh

Matt Sullivan
2nd June 2022

Higgs pair workshop

Overview

- Future Circular Collider:
 - FCC introduction & timeline
 - FCC detector design & simulation
 - FCCAnalyses framework
- HH at FCC-hh
 - Existing prospects studies
 - ullet Work-in-progress $bar{b} au au$ study

FCC detector, simulation & analysis

FCC introduction (1/2)

- Future Circular Collider (FCC) is proposed $\sim \! 100$ km successor to HL-LHC

- Three phases:
 - *ee* phase: $\sqrt{s} \sim 91\text{-}365$ GeV, precision EW, Higgs physics
 - *eh* phase: $\sqrt{s} \sim 3.5$ TeV, precision QCD, DIS
 - *hh* phase: $\sqrt{s} = 100$ TeV, unprecedented search reach
- Rich HH potential at the FCC-hh focus of this talk!

FCC introduction

(2/2)

- Update on FCC given by Fabiola on Monday at FCC week (now)
- Feasibility study underway, result expected to be published \sim 2025
- Key dates:
 - Construction begins early 2030s
 - FCC-ee operation begins ∼2040
 - FCC-hh operation begins \sim 2065

FCC-hh: Detector design

- FCC CDRs: FCC-ee, FCC-hh
- Key parameters for FCC-hh:
 - $\mathcal{L} = 3 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
 - Upto $<\mu>=1000$
- Baseline detector design aims for both precision and discovery:
 - Tracking upto $|\eta| \sim 4$
 - Calorimetery upto $|\eta| \sim 6$
 - Efficient jet/ τ -tagging
 - Excellent track measurement across large p_T range

Baseline FCC-hh detector design

FCC-hh: Detector simulation

- Baseline FCC-hh detector response simulated using Delphes parameterisation
- Lepton (e, μ) and photon reconstruction employs parameterised reco/ID efficency & resolution effects
- Jet reconstruction uses Anti- k_T algorithm with R=0.4
- Object isolation calculated using cone of R=0.3
- b-tagging, c-tagging and τ -tagging efficiency parameterised in $p_{\mathrm{T}},~\eta$

- Common RDataFrame analysis framework developed for FCC physics studies: FCCAnalyses
- Common C++ analysers, analysis-specific
 Python config & analysis:
 - See C. Helsens talk for example workflow
 - FCC analysis starterkit
- Inputs to analyses are produced in EDM4HEP format:
 - All available MC listed here
- Efficient analysis possible with handful of scripts

- Example FCC-hh analysis skeleton developed at Liverpool: fcchh-liverpool
- Columnar setup enables rapid prototyping of analysis and easy interface to python ML libraries
- Code to create generic ntuple containing only low-level ($p_{\mathrm{T}},~\eta,~\phi,~m,~E$) information of light jets, b-jets, c-jets, $\tau,~e/\gamma,~\mu$ and $E_{\mathrm{T}}^{\mathrm{miss}}$
- Scripts to add composite variables & apply selections, make plots etc
- Everything one needs to start their own FCC analysis!

Name	Last commit
CMakeLists.txt	Committing to Liverpool Gitlab
add_variables.py	Committing to Liverpool Gitlab
C++ analysis.cc	Committing to Liverpool Gitlab
analysis.py	Committing to Liverpool Gitlab
finalSel.py	Committing to Liverpool Gitlab
👨 plots.py	Committing to Liverpool Gitlab
🔷 preSel.py	Committing to Liverpool Gitlab

HH physics at FCC-hh

- Numerous existing studies on *HH* at FCC-hh:
 - *HH* production $(b\bar{b}b\bar{b}, b\bar{b}\tau\tau, b\bar{b}\gamma\gamma)$
 - HH + jet production (boosted $b\bar{b}b\bar{b}$, $b\bar{b}\tau\tau$, resolved $b\bar{b}\tau\tau$)
- Combination of resolved channels has expected δ_μ of 2.4-5.1%, δ_{κ_λ} of 3.4-7.8%
- Boosted $b\bar{b}\tau\tau$ can constrain κ_{λ} to within 8% alone!
- What can be improved upon?

arXiv 2004.03505

HH studies for FCC-hh

(2/2)

- Focus on $HH o bar{b} au au$ channel
- Use more modern MVA tools to improve S/B:
 - XGBoost, DNNs
- Use latest & greatest FCC-hh simulated samples with more complete background estimation:
 - Top backgrounds: tt̄, single top (s-, t-channel), tt̄V, tt̄VV
 - Single Higgs backgrounds: ggF, VBF, ttH, VH
 - Continuum backgrounds: QCD+EW (e.g. $pp \rightarrow b\bar{b}Z/\gamma^*$), EW (e.g. $pp \rightarrow HZ/\gamma^*$)

	bb	ww	ττ	ZZ	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

Process	σ [pb]	
ggF HH	1.224 (NNLO _{FT})	
Inclusive $t\bar{t}$	35000 (NNLO)	

$HH o b ar{b} au au$: Preliminary selection

- Apply loose topological and kinematic cuts:
 - $b\bar{b}\tau_{\ell}\tau_{h}$: 2 b-jets, exactly 1 e/μ and exactly 1 hadronic τ (OS)
 - $b\bar{b}\tau_h\tau_h$: 2 *b*-jets, exactly 2 hadronic τ (OS), lepton veto
- Example distributions with loose selection applied for $b\bar{b}\tau_\ell\tau_h$ (left) and $b\bar{b}\tau_h\tau_h$ (right)

- Use XGBoost classifier to separate signal from background constructed with $t\bar{t}$, QCD+EW and EW processes
- Randomly split signal and background into two folds:
 - Train on one half, apply to other half
- Use same strategy for both $au_\ell au_h$ and $au_h au_h$

$bar{b} au_\ell au_h$	$bar{b} au_{h} au_{h}$		
m _{bb}			
$\rho_{\mathrm{T}}(b_{1,2})$			
$\Delta R(b_1,b_2)$			
$m_{ au\ell}$	$m_{ au au}$		
$\Delta R(au,\ell)$	$\Delta R(au, au)$		
$\Delta p_{\mathrm{T}}(au,\ell)$ $\Delta p_{\mathrm{T}}(au, au)$			
$m_{ m T}(\ell)$	-		
m_{HH}			
$\Delta\phi(H,H)$			
$\mathcal{E}_{\mathrm{T}}^{\mathrm{miss}}$ centrality			

- BDT output distributions for $b\bar{b}\tau_{\ell}\tau_{h}$ (top) and $b\bar{b}\tau_{h}\tau_{h}$ (bottom) with fold 0 (left) and fold 1 (right)
- Similar performance between folds
- Some overtraining present
 - Impact mitigated by k-folding

• Apply each BDT to respective folds for $t\bar{t}$, QCD+EW and EW backgrounds, apply BDT₀ on minor backgrounds

 $\overline{HH} \rightarrow b\bar{b}\tau\tau$: Results

- Use BDT distribution as final discriminant
 - Binning driven by low MC stats at high BDT output
 - Low MC stats can be seen in yields table
- How does this compare to previous studies?

	Signal region yield		
Process	$bar{b} au_\ell au_{ m h}$	$bar{b} au_{ m h} au_{ m h}$	
t₹	1142245	332048	
t₹H	24540	18405	
$tar{t}Z$	3486	3486	
$t \bar{t} Z Z$	30	30	
QCD + EW	25561	25661	
EW	323	185	
$t ar{t} W$	306	-	
$t \bar{t} WW$	61	-	
Single top	-	-	
H (ggF)	70286	30122	
H (VBF)	3290	3290	
VH	9263	7411	
Total background	1279491	420638	
Signal	36564	22208	

 $HH \rightarrow b\bar{b}\tau\tau$: Results

(2/3)

- Compare with *HH*+jet study
- Simplistic S/\sqrt{B} gives similar sensitivity
 - No resolved $b\bar{b}\tau_h\tau_h$ result in $HH+{
 m jet}$ study
- Use binned BDT distribution to calculate final sensitivity
 - Calculate signal significance in BDT bins: $Z = N_s / \sqrt{N_b + (N_b \sigma_b)^2}$
 - Add per-bin significance in quadrature to get final estimate

	<i>HH</i> +jet study	WIP study	
	Yield $[fb^{-1}]$		
Signal	0.14	1.22	
Background	0.96	38.94	
	S/\sqrt{B}		
$ au_{\ell} au_{h}$	24.97	32.32	

 $bar{b} au_\ell au_h$ comparison

- Significance Z = 5.7 σ for $\kappa_{\lambda}=1$: (2.9 σ $b\bar{b}\tau_{\ell}\tau_{h}$, 4.9 σ $b\bar{b}\tau_{h}\tau_{h}$)
- Sensitivity $\geq 5\sigma$ for large range of κ_{λ} values under various systematic assumptions
 - Below: comparison with recent ATLAS HL-LHC projection (ATL-PHYS-PUB-2021-044)
 - Caveat: signal rescaling only!

Summary

Summary

- Future Circular Collider
 - FCC promises a long programme of precision physics with unprecedented discovery potential
 - The 2/3 phases of FCC will take us to the end of the century
 - ullet Constraining κ_λ is one of the primary goals of the FCC
- HH at the FCC-hh
 - ullet Previous HH studies at FCC-hh show κ_λ constraints could be down to 5%
 - ullet WIP updated HH o bar b au au study has promising results so far (some caveats!)

Thanks for listening!

Additional content

$HH o bar{b} au au$: Preliminary selection

$ au_{\ell} au_{ m h}$		$ au_{ extsf{h}} au_{ ext{h}}$		
Selection	Efficiency	Selection	Efficiency	
$N(b ext{-jets}) = 2$	0.45	-	-	
$b ext{-jet}p_{\mathrm{T}}>30$	0.40	-	-	
${\sf N}({\sf e},\mu)=1$	0.07	$N(e,\mu)=0$	0.19	
$\mathcal{N}(au_{h})=1$	0.03	$N(\tau_h)=2$	0.06	
$ au_\ell au_h$ OS	0.03	$\tau_h \tau_h$ OS	0.05	

Efficiency under study!