Higgs Pairs Workshop 2022, Dubrovnik, Croatia 30 May 2022

HH Production in the SM: Theoretical Status

Stephen Jones

IPPP, Durham / Royal Society URF

STILLET

THE ROYAL
SOCIET

Why measure Higgs pair production?

$$
\mathcal{L} \supset -V(\phi), \quad V(\Phi) = -\mu^2(\Phi^{\dagger}\Phi) + \lambda(\Phi^{\dagger}\Phi)^2
$$

\nEW symmetry breaking
\n
$$
\mu^2 = \lambda v^2
$$
\n
$$
V(H) = \frac{1}{2}m_H^2H^2 + \lambda vH^3 + \frac{\lambda}{4}H^4,
$$
\nSM: self-couplings
\ndetermined by m_H, v
\n
$$
\mu = \frac{q'}{2} + \
$$

4

HH Production Channels at the LHC q H

Gluon Fusion: State of the Art

An approximate history (30 years in 30 seconds)

[1] Glover, van der Bij 88; [2] Dawson, Dittmaier, Spira 98; [3] Shao, Li, Li, Wang 13; [4] Grigo, Hoff, Melnikov, Steinhauser 13; [5] de Florian, Mazzitelli 13; [6] Grigo, Melnikov, Steinhauser 14; [7] Grigo, Hoff 14; [8] Maltoni, Vryonidou, Zaro 14; [9] Grigo, Hoff, Steinhauser 15; [10] de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16; [11] Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16; [12] Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Zirke 16; [13] Ferrera, Pires 16; [14] Heinrich, SPJ, Kerner, Luisoni, Vryonidou 17; [15] SPJ, Kuttimalai 17; [16] Gröber, Maier, Rauh 17; [17] Baglio, Campanario, Glaus,
Annual Carlo Carlo Carlo Carlo Carlo Carlo Carlo Ca Mühlleitner, Spira, Streicher 18; [18] Grazzini, Heinrich, SPJ, Kallweit, Kerner, Lindert, Mazzitelli 18; [19] de Florian, Mazzitelli 18; [20] Bonciani, Degrassi, Giardino, Gröber 18; [21] Davies, Mishima, Steinhauser, Wellmann 18, 18; [22] Mishima 18; [23] Gröber, Maier, Rauh 19; [24] Davies, Heinrich, SPJ, Kerner, Mishima, Steinhauser, David Wellmann 19; [25] Davies, Steinhauser 19; [26] Chen, Li, Shao, Wang 19, 19; [27] Davies, Herren, Mishima, Steinhauser 19, 21; [28] Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira 21; [29] Bellafronte, Degrassi, Giardino, Gröber, Vitti 22; computation of the radiation of \mathbb{R}^n radiation corrections including the asymptotic expansion and the asymptotic expansion and the asymptotic expansion and the set of \mathbb{R}^n

A useful approximation: Heavy Top Limit

Heavy Top Limit (HTL): integrate out top quarks ($m_T \rightarrow \infty$) Introduces couplings c_h & c_{hh} between gluons and Higgs, matched to SM @ 4-loops

Spira 16; Gerlach, Herren, Steinhauser 18

No internal masses, easier to compute higher-order corrections:

N3LO Heavy Top Limit Graphs and \overline{X} in the performance of performance \overline{X} $T_{\rm obs}$ limit s scale-dependent part of the two-loop and its two-

culations. The two Wilson coecients are also expanded

→ See: Hua-Sheng (Tue) in our calculations. All the terms except for *^O*(↵⁵ → See: Hua-Sheng (Tue) **Very mild scale dependence**

has been compared against the analytical result we cal-

Ingredients: N³LO H calculation LHAPDF6 [97], and the associated strong coupling ↵*s*. Anastasiou, Duhr, Dulat, Herzog, Mistlberger 15; Dulat, Lazopoulos, Mistlberger 18 + 2-loop 4-point functions variation of the factorization scale *µ^F* and the renormalization scale *µ^R* in the form of *µR,F* = ⇠*R,F µ*⁰ with ⇠*R,* ⇠*^F* 2 *{*0*.*5*,* 1*,* 2*}*. Ravindran 18 Banerjee, Borowka, Dhani, Gehrmann,

Table inclusive total cross sections $\mathbb T$ inclusive total cross sections (in unit of fb) Vary mild scale denendence

Chen, Li, Shao, Wang 19 From Li Shan Wang 19 $r_{\rm{max}} = r_{\rm{max}} + r_{\rm{max}}$

Beyond HTL @ NLO (Schematically)

Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, (Schubert), Zirke (16),16; Baglio, Campanario, Glaus, Mühlleitner, (Ronca), Spira, (Streicher) 18, 20;

NLO: Combining small- p_T and small- m_T expansions

Expansion around $p_T^2 + m_H^2 \leq \hat{s}/4$ and also around $m_H \ll m_T \ll \hat{s}, |\hat{t}|$ are known Bonciani, Degrassi, Giardino, Gröber 18; Davies, Mishima, Steinhauser, Wellmann 18, 18

 $H1$ dill S. $[m/n](x) = \frac{1}{1 + a_1x + \dots + a_nx^n}$ $\mathbf{1} + \mathbf{q}$ ₁ \mathbf{x} expansion and small $\mathbf{q}_n \mathbf{x}$ Using Padé approximants: [*m*/*n*](*x*) = $p_0 + p_1 x + \dots + p_m x^m$ $1 + q_1 x + \dots + q_n x^n$

Can find some overlap where the two approximations agree for all relevant \hat{s},\hat{t} Bellafronte, Degrassi, Giardino, Gröber, Vitti 22

aglio, Campanario, Glaus, Mühlleitner, (Ronca), Spira, (Str
. 2.5 Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, (Schubert), Zirke (16),16; This approximation agrees well with the numerical NLO result a, $\sum_{i=1}^{n}$ $\binom{n}{i}$ $\binom{n}{i}$ $\binom{n}{i}$ $\binom{n}{i}$ $\binom{n}{i}$ $\binom{n}{i}$ Baglio, Campanario, Glaus, Mühlleitner, (Ronca), Spira, (Streicher) 18, 20;

Beyond HTL @ NNLO

Differential NNLO HTL + NLO SM

Top quark mass effects studied using 3 different approximations

Grazzini, Heinrich, SJ, Kallweit, Kerner, Lindert, Mazzitelli 18; (+NNLL) de Florian, Mazzitelli 18;
 $\mathcal{A}^{\mathcal{C}}_{\textrm{H}\textrm{EFT}}(\imath\jmath\rightarrow HH+1)$ $t_{\rm 10}$

\vert 1) NNLO_{NLO-i} \vert 1) NNLO_{NLO-i}

Rescale NLO by $K_{NNLO} = NNLO_{HTL}/NLO_{HTL}$ $\frac{1}{n}$ and $\frac{1}{n}$ and $\frac{1}{n}$ and $\frac{1}{n}$ \parallel - Rescale inlumby n $_{\rm NNLO}$ = ininlu $_{\rm HTL}$ /inlu $_{\rm HTL}$ NNLOFTapprox predictions is also presented. The uncertainties due to the *q^T* -subtraction and

\vert 2) NNLO _{B-proj}

 \parallel Project real radiation contributions to Born configurations, rescale by LO/LO $_{\sf HTL}$ stronger as we increase the collider energy, being close to a factor α factor of α A s is well known, scale uncertainties can only provide a lower limit only provide a lower limit on the true perturbative \mathcal{A}

3) NNLO FTapprox **3** $\sum_{i=1}^{\infty}$

MNLO HTL squared amplitude rescaled for each $\frac{1}{2}$ multiplicity by: with the moderation of α improvement is suggested in the suggests and in the significant in the significa

rt,
$$
\mathcal{R}(ij \to HH + X) = \frac{\mathcal{A}_{\text{Full}}^{\text{Born}}(ij \to HH + X)}{\mathcal{A}_{\text{HEFF}}^{(0)}(ij \to HH + X)}
$$
8;

Beyond HTL @ NNLO

Differential NNLO HTL + NLO SM

Top quark mass effects studied using 3 different approximations

Mazzitelli 18; (+NNLL) de Florian, Mazzitelli 18; $\mathcal{A}_{\mathrm{HEFT}}^{\mathcal{F}}(i,j\rightarrow HH+X)$ Grazzini, Heinrich, SJ, Kallweit, Kerner, Lindert,

1: 1) NNLO_{NLO-i} and Higgs boson pair productions for Higgs boson pair production for diagnosis sections for diagnosis sections for \mathbf{I}

Rescale NLO by $K_{NNLO} = NNLO_{HTL}/NLO_{HTL}$ energies at NLO and NNLO with the three considered approximations. Scale uncertain t_1 - Rescale inlumby K_{NNLO} = ininlu $H_{\rm TL}$ /inlu $H_{\rm TL}$ NNLOFTapprox predictions is also presented. The uncertainties due to the *q^T* -subtraction and

\vert 2) NNLO _{B-proj}

 \parallel Project real radiation contributions to Born configurations, rescale by LO/LO $_{\sf HTL}$ stronger as we increase the collider energy, being close to a factor α factor of α A s is well known, scale uncertainties can only provide a lower limit only provide a lower limit on the true perturbative \mathcal{A}

3) NNLO FTapprox **Execute 1 we see that the distribution of the NNLO** and Table 1 we see that the NNLO and NNLO an $\sum_{i=1}^{\infty}$ always larger than the NNLO scale uncertainties (although within $\sum_{i=1}^{\infty}$

MNLO HTL squared amplitude rescaled for each \pm multiplicity by: $\frac{1}{2}$ with the moderation of $\frac{1}{2}$ suggests a significant in the significant in

rt,
$$
\mathcal{R}(ij \to HH + X) = \frac{\mathcal{A}_{\text{Full}}^{\text{Born}}(ij \to HH + X)}{\mathcal{A}_{\text{HEFF}}^{(0)}(ij \to HH + X)}
$$
8;

Beyond HTL @ N3LO $\overline{}$

Top quark mass effects included in N3LO HTL (up to NLO) \mathcal{L} \sim 10 \sim 10 \sim 10 \sim 2 \sim 2

KHOWH $\text{FT}_{\text{approx}}$ -like result not known, requires m_T in reals \longrightarrow See: Hua-Sheng (Tue)
¹⁴ \sim Results agree with NNLO result but with reduced scale uncertainty

nena l

Total Cross Section & Scale Uncertainty @ 14 TeV

Note: papers @ 13/14 TeV (not 13.6 TeV)

Chen, Li, Shao, Wang 19, 19; Grazzini, Heinrich, SPJ, Kallweit, Kerner, Lindert, Mazzitelli 18; de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16; Maltoni, Vryonidou, Zaro 14 (recalculated); Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16; Dawson, Dittmaier, Spira 98 (recalculated); Glover, van der Bij 88 (recalculated)

$$
\begin{cases}\n\text{PDF4LHC15_nlo/nnlo} \\
m_H = 125 \text{ GeV} & m_T = 173 \text{ GeV} \\
\text{Uncertainty:} \\
\mu_R = \mu_F = \frac{m_{HH}}{2} \\
\mu \in \left[\frac{\mu_0}{2}, 2\mu_0\right]^{2} (7 - \text{point})\n\end{cases}
$$

If we trust the $NLO + NmLO$ HTL combinations

Scale: $+2.2\%$ / -5.0% *PDF+* α_s *:* $\pm 3.0\%$ m_{T} approx: $\pm 2.7\,\% \quad m_{T}$ scheme: $+4.0\,\%$ / $-~18.0\,\%$

See: HH Twiki

Status: HH Self Coupling

Grant Agreement numbers PITN-GA-2010-264564 (LHCPhenslate into uncertainties Ford complete by the IIISN contractor Λ_{σ} $\sum_{i=1}^n$ $SO(5)$ NI A_{III} we have \longrightarrow coupling extraction: for $gg \to HH$ close to SM λ_{hhh} we have $\frac{1}{\sqrt{g}}$ \ln the solf Theory uncertainties on cross section translate into uncertainties on the self- \mathbf{A} Λ λ $\Delta \lambda$ [14] T. Binoth, S. Karg, N. Kauer, and R. Ruckl, Phys.Rev. **D74**, $\overline{1}$ $\overline{1}$ \mathcal{L} Self coupling dependence known at: Δ*σ σ* $\sim -\frac{\Delta\lambda}{\lambda}$ *λ*

[1] F. Englert and R. Brout, Phys.Rev.Lett. **13**, 321 (1964). pagno et al. 10,20, 11 $\overline{10}$ N³LO (re-weighted HTL) Chen, Li, Shao, Wang 19 CONF-2013-012. ATLAS- CONF-2013-013. (2013). https://launchpad.net/madgraph5,http://amcatnlo.cern.ch. [18] U. Baur, T. Plehn, and D. L. Rainwater, Phys.Rev.Lett. **89**, Borowka, et al. 16; Baglio et al. 18,20; Heinrich, et al. 19, 20; NLO+PS (full theory)

Status: HH EFT

NNLO corrections have typically ~10% effect on $(\sigma/\sigma_{\rm SM})_{\rm NNLO}/(\sigma/\sigma_{\rm SM})_{\rm NLO}$ Significantly reduce scale uncertainties

EFT Results in various approximations:

- B.I. NLO HTL Gröber, Mühlleitner, Spira, (Streicher) (15), 17;
- NLO (HEFT) Buchalla, Capozi, Celis, Heinrich, Scyboz 18; NLO (HEFT)
- that, with the coupling of the anomalous couplings coupling coupling coupling coupling coupling coupling coupling
the coupling coupl $+ PS$ Heinrich, SJ, Kerner, Scyboz 20;
- $\begin{array}{ccc} \text{NIL} & \text{$ larger than the current experimental limit. While Eq. (3.1) describes the allowed region \bigcap (CNAEFT), in Eq. (3.1), generate variations in the di-Higgs cross section which are discussed w LO (JIVILI I) The current experimental limit. While ϵ NLO (SMEFT) Heinrich, Lang, Scyboz 22;
- **in the EFT** parameter space of the results in Fig. 3 (left) clearly in Fig. 5 (left) clearly in Fig. 5 (left) c B.I. NNLO HTL de Florian, Fabre, Mazzitelli 17; → See: Luc
- NLO + NNLO' de Florian, Fabre, Heinrich, Mazzitelli, Scyboz 21 **Kaquel/NIC** NLO + NNLO'

→ See: Ludovic/ Raquel/Nicolas (Tue)

Gluon Fusion: Issues & Dangers

Mass Scheme Uncertainty

With such a tiny scale uncertainty, other sources of uncertainty become relevant

(TRONCa), Spira, Sueicher To, (20) $\textsf{HH@NLO}\text{:}\ m_{T}$ in the \textsf{OS} and $\overline{\textsf{MS}}$ scheme $\begin{array}{c} \textsf{Baglio}, \textsf{Campanario}, \textsf{Glaus}, \textsf{Mühlleitner}, \ \textsf{H}\textsf{H@NLO}\text{:}\ m_{T} \textsf{in the OS} \textsf{and } \overline{\textsf{MS}} \textsf{Scheme} \end{array}$ (+Ronca), Spira, Streicher 18, (20)

OS to
$$
\overline{\text{MS}}
$$
 mass conversion: $m_t \to \overline{m_t}(\mu_t) \left(1 + \frac{\alpha_s(\mu_R)}{4\pi} C_F \left\{ 4 + 3 \log \left[\frac{\mu_t^2}{\overline{m_t}(\mu_t)^2} \right] \right\} \right)$

mass in the range between *Q/*4 and *Q* we obtain the follow-Top quark mass scheme unc:

$$
\frac{d\sigma(gg \to HH)}{dQ}\Big|_{Q=300 \text{ GeV}} = 0.0312(5)^{+9\%}_{-23\%} \text{fb/GeV},
$$
\n
$$
\frac{d\sigma(gg \to HH)}{dQ}\Big|_{Q=400 \text{ GeV}} = 0.1609(4)^{+7\%}_{-7\%} \text{fb/GeV},
$$
\n
$$
\frac{d\sigma(gg \to HH)}{dQ}\Big|_{Q=600 \text{ GeV}} = 0.03204(9)^{+0\%}_{-26\%} \text{fb/GeV},
$$
\n
$$
\frac{d\sigma(gg \to HH)}{dQ}\Big|_{Q=1200 \text{ GeV}} = 0.000435(4)^{+0\%}_{-30\%} \text{fb/GeV},
$$
\nLarge uncertainty obtained
\ncomparing OS scheme with $\overline{\text{MS}}$
\nscheme at scale m_{HH}

Mass Scheme Uncertainty (II) 4 Uncertainties for di↵erent Higgs self-interactions ⁼ 1 : *tot* = 131*.*9+2*.*5% 6*.*7% fb*,* =0: *tot* = 70*.*38+2*.*4% 6*.*1% fb*,*

5*.*0% fb*,*

=1: *tot* = 31*.*05+2*.*2%

Combination of scale (μ_R, μ_F) and top mass scheme (OS / MS) studied Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira 20 Raqlio Campanario Glaus Mühlleitner Ronca Spira Bagilo, Campanario, Giaus, iviunileither, Ronca, Spira 20 =2: *tot* = 13*.*81+2*.*1% 4*.*9% fb*,* = 2*.*4 : *tot* = 13*.*10+2*.*3% 5*.*1% fb*,*

If we wish to take the envelope of the predictions as the uncertainty, then the two uncertainties should be added linearly (validated at NLO) 6% at NLO for large and small values of [17] such that the change with respect to the uncertainties should be added **ilnearly** (val **linearly** (validated at NLO) *nimearly* (validated at NLO)

ichame Linc Proposed Combination Eq. (9) *linearly* we arrive at the central values with combined uncertainties, Proposed Combination

 \bigcirc final numbers showld serve as the recommended values for the total cross sections \bigcirc and uncertainties at the LHC with ^p*^s* = 13 TeV as a function of . @13 TeV

→ See: Michael (Tue)

Mass Scheme Uncertainty (III)

Such mass scheme uncertainties show up in other processes (e.g. H*, HJ, ZH) SPJ, Spira (Les Houches 19)

 $A_i^{\text{fin}} = a_s A_i^{(0),\text{fin}} + a_s^2 A_i^{(1),\text{fin}} + \mathcal{O}(a_s^3)$ with $a_s = \alpha_s / 4\pi$

Davies, Mishima, Steinhauser, Wellmann 18; Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira, Streicher 20

$$
A_i^{(0)} \sim m_t^2 f_i(s, t)
$$

$$
A_i^{(1)} \sim 6C_F A_i^{(0)} \log \left[\frac{m_t^2}{s}\right]
$$

LO: m_t^2 from y_t^2 NLO: leading $log(m_t^2)$ from mass c.t. converting to $\overline{\mathrm{MS}}$ gives $\log\left[\mu_t^2/s\right]$ motivating scale choice of $\mu_t^2 \thicksim s$

Davies, Mishima, Steinhauser 20; Chen, Davies, Heinrich, SPJ, Kerner, Mishima, Schlenk, Steinhauser 22

$$
A_i^{(0)} \sim m_t^2 f_i(s, t) \log^2 \left[\frac{m_t^2}{s} \right]
$$

$$
A_i^{(1)} \sim \frac{(C_A - C_F)}{6} A_i^{(0)} \log^2 \left[\frac{m_t^2}{s} \right]
$$

LO: one m_t from y_t NLO: leading $log(m_t^2)$ not coming from mass c.t. $(C_{\!A})$

EFT Choice

Several challenges/considerations with using Effective Field Theories (EFTs)

Can construct more than one EFT with different constraints/relations on operators

HEFT:

Higgs boson field $h(x)$ is $SU(2)_L \times U(1)_Y$ singlet Expand in loop orders $\sim 1/(16\pi^2)$

$$
\mathcal{L}_{\text{HEFT}} = \mathcal{L}_2 + \sum_{L=1}^{\infty} \sum_{i} \left(\frac{1}{16\pi^2} \right)^L C_i^{(L)} O_i^{(L)}
$$

A priori no relation between & *cggh cgghh*

$SMEFT \subset HEFT:$

Higgs field complex doublet Expand in canonical dimension $\sim 1/\Lambda^2$

$$
\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)}}{\Lambda^2} O_i^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^3}\right)
$$

Relation *cggh* ∼ *cgghh*

→ See: Raquel/Ludovic/Nicolas (Tue), Alexandre (Fri)

EFT Truncation

How the EFT expansion is truncated is not always innocent

$$
\sigma \simeq \begin{cases}\n\sigma_{\text{SM}} + \sigma_{\text{SM} \times \text{dim}6} & \text{(a)} \qquad \text{i.e. Include } 1/\Lambda^2 \text{ at cross section level} \\
\sigma_{\text{(SM+dim6)} \times (\text{SM+dim6})} & \text{(b)} \qquad \text{i.e. include } 1/\Lambda^2 \text{ at amplitude level} \\
\sigma_{\text{(SM+dim6)} \times (\text{SM+dim6})} + \sigma_{\text{(SM} \times \text{dim6}^2)} & \text{(c)} \qquad \text{i.e. } + 1/\Lambda^2 \cdot 1/\Lambda^2 \text{ at cross section level} \\
\sigma_{\text{(SM+dim6+dim6^2)} \times (\text{SM+dim6+dim6^2})} & \text{(d)} \qquad \text{i.e. } + 1/\Lambda^2 \cdot 1/\Lambda^2 \text{ at amplitude level}\n\end{cases}
$$

 \sim act wildly different EET limite both ot LO 8, NILO Heinrich Lang Sevi Can get wildly different EFT limits both at LO & NLO Heinrich, Lang, Scyboz 22

Gluon Fusion: Horizon

Tackling Mass Scheme Uncertainties

Low invariant mass:

expand in $1/m_t^2$ known to NNLO Grigo, Hoff, Steinhauser 15;

Around Peak: threshold expansion Gröber, Maier, Rauh 17

High energy:

small- $m_{\tilde{t}}$ expansion known at NLO Davies, Mishima, Steinhauser, Wellmann 18, 19

See also: Bonciani, Degrassi, Giardino, Gröber 18; Davies, Steinhauser 19; Davies, Herren, Mishima, Steinhauser 19; Davies, Gröber, Maier, Rauh, Steinhauser 19; Bellafronte, Degrassi, Giardino, Gröber, Vitti 22;

Options: 1) Try to understand structure of mass logarithms 2) Keep calculating 3) Other ideas(?)

Liu, Penin 17, 18; Liu, Modi, Penin 22

$NNLO$ Beyond HTL such as those shown in (c) lead to *n*³ **have a contributions which have a computed in the computed in the computed in the computations of the computed in** Ref. [25]. The *n*³

and have not been computed in Ref. α in Ref. [25]; they are considered in Ref. [25]; they are considered here.

NNLO Virtual & Real Corrections in a $1/m_t^2$ expansion: NNLO Virtual & Real Corrections in a $1/m_t^2$ expansion:

3-loop virtual piece in large- m_e expansion (up to $1/m⁸$) 3-loop virtual piece in large- m_t expans 3-loop virtual piece in large- m_t expansion (up to $1/m_t^8$) in $\text{large-}m_t$, expansion (up to $1/m_t^8$) Davies, Steinhauser 19

5-loop forward scattering amplitude (n_h^3) piece Figure 2: Sample Feynman diagrams in the forward-scattering kinematics. Three- and

J-loop forward scattering amplitude (all pieces) 5-loop forward scattering amplitude (all pieces) but the source between wishima,

Davies, Steinhauser 19 Davies, Herren, Mishima, Steinhauser 19 four-particle cuts are shown by η , β is the *n*³ second data lines, respectively. The *n*³ second data lines, respectively.

Davies, Herren, Mishima, Steinhauser 21

current current quarks, Higgs bosons and gluons, \mathcal{L} Lo nave similar results in a $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ for $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ for $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $\left\{ \begin{array}{rcl} \text{small-} & m_t \text{ expansion} & \text{if} & \left\{ \begin{array}{rcl} \text{small-} & m_t \text{ expansion} & \text{if} & \left\{ \begin{array}{rcl} \text{small-} & m_t \text{ is a positive} \end{array} \right\} \end{array} \right\} \end{array}$ **Example 2** Feasible during Run 3 (?) Would be extremely useful and \mathcal{C} F_{res} $\begin{array}{ccc} \text{Snian } m_t \text{ expansion} & \text{if} & \text$ to have similar results in a

EW Corrections

With N³LO QCD (HTL) results known, could now be interesting to explore also the impact of EW corrections (in single Higgs for off-shell Higgs have $\pm 5 \, \%$ impact) Actis, Passarino, Sturm, Uccirati 08

Richer structure in the SM and much richer structure in the context of EFT

Example: Partial 2-loop EW corrections (involving λ_3 and λ_4)

Borowka, Duhr, Maltoni, Pagani, Shivaji, Zhao 18

HL-LHC has only limited sensitivity to λ_4 , more relevant for FCC

The complete EW corrections could potentially modify distributions and bounds in both SM and EFT frameworks

→ See: Hantian (Fri)

Backgrounds

I am aware of two background studies taking place in the context of the HH WG \mathcal{L}

 $b\bar{b}H$ (background to HH with $H \to bb$) \quad $t\bar{t}$ (background to $b\bar{b}WW$, $bb\tau$)

Included at LO in past searches (via NNLOPS ggF) w/ 100% uncertainty assigned ATLAS-CONF-2012-016 NUCLO COLO CONTROLS IN THE LARGE-MANUSING BEEN CONTROLLED IN THE LARGE-MELTING WAS ARRESTED FOR LARGE-MANUSING $\frac{1}{2}$

NLO corrections known in the HTL, large K-factors ($\sim 2 - 3$) depending on fiducial cuts Amplitudes for NNLO corrections are now also known Deutschmann, Maltoni, Wiesemann, Zaro 18 [ATLAS non-resonant bbWW search, 1908.06765] with the recent recent
New York and recent rece Badger, Hartanto, Krys, Zoia 21

 \mathcal{L} $t\bar{t}$ (background to $b\bar{b}WW,\,bb\tau$)

theoretical uncertainty Simulated using NLO MC w/ large

ased to reduce the uncertainty Zanderighi 20, 21 region of HTL in the PS region of HTL in the PS region of \sim Results on $t\bar{t}$ with NNLOPS could be used to reduce the uncertainty Mazzitelli, Monni, Nason, Re, Wiesemann,

VBF: State of the Art

VBF HH

VBF HH is sensitive not just to $c_{hhh}^{}$ but also $c_{\rm 2v}^{}$ and $c_{v}^{}$

araz *G*² *^F m*⁴ *V A* Precision **districts** where α Approximations & Precision

Known to N³LO in the $\overline{}$ (*q*¹ + *k*1)² *m*² approximation structure function / DIS

> *k k*¹ annrovimation is a satisfy *k*¹ + *k*² = *q*¹ + *q*2, is the trilinear Higgs selfcoupling and α is the value of the value of

to colour conservation

ⁱ) = ⇣ ⌘

F ^V ¹ (*xi, Q*² *i*)

 $U \cap \mathfrak{c}$ as \mathfrak{c} and \mathfrak{c}

x footoriaablo

 \cap

VBF HH: Non-factorisable contribution **Factorisas Counterparts. For this relation is relatively** corrections, as depicted in Fig. 6, where we provide two providences in Fig. 6, where we provide two providence ble contribution on

Liu, Melnikov, Penin 19 eikonal approximation eilen with the eigenvalue of the eigenvalue of the eigenvalue of Dreyer, Karlberg, Tancredi 20, 22 ϵ atoriaable contributions resemtly. Non-factorisable contributions recently d using the eikonal annroximation was denig the enternal approximation. r_{c} reflection can be expanded in the value of r_{c} studied using the eikonal approximation

twee ~10% differences between non-fac contributions to T and B diagrams conclude that the non-factorisable corrections received a \sim

$$
d\sigma_{HH,nf}^{NNLO} \sim -\tilde{\alpha}_s^2 \left[2.3 \cdot d\sigma_{TT}^{LO} + 2.2 \cdot d\sigma_{TB}^{LO} + 2.1 \cdot d\sigma_{BB}^{LO} \right]
$$

ute cancellations hetween T and R Delicate cancellations between T and B ams conspire In order to see how the NNLO non-factorisable cordiagrams conspires to preserve unitarity

(As pointed out by authors) Fikonal $f(x)$ to point to arbitrary and in principal in principal $f(x)$ ximation not trustworthy for too high p_r approximation not trustworthy for too high $p_{t,j}$ **Note:** (As pointed out by authors) Eikonal

HH VBF: NNLO QCD + NLO EW

Inclusive known to N3LO QCD

Dreyer, Karlberg 18

State of the art for differential predictions

NNLO QCD Dreyer, Karlberg 18

+ NLO EW Dreyer, Karlberg, Lang, Pellen 20

Table 1: The fiducial cross section for the process pp \mathbf{A} and in performance in computed according to Eq. (4) at 14 TeV and under the selection cuts given in Sec. 2. The

the factorisable ones. We compute the factorisable NNLO QCD corrections using the $FW\ corrections\ similar\ in\ size\ to\ NLO OCD$ \downarrow corrections Forections and to those in single ringgs case EW corrections similar in size to NLO QCD corrections. and to these in single Higgs sase corrections and to those in single Higgs case

↵5 . At the same order, the virtual corrections are obtained by inserting EW particles anywhere possible in the tree-level topologies, and the tree-level topologies, and the contributions are the t Note that at the order *^O* ↵5 Ī. , photon-induced contributions also arise. The second-induced contributions also arise. The second-induced contributions are \mathbf{r} neglected in the provision work as the provision of shown to be rather small for similar small for similar sma processes [42, 43, 38]. Note that EW corrections to single-Higgs production have been All corrections available in public code \mathbf{S} proVBFHH v1.2.0 indicate the statistical error while the additional information on full

Earnon CMI: can roccale to include **HOLLO BEEN CALLESCAN** As mentioned previously, all LO and NLO predictions are based on the full computation, *i.e.* \mathbb{R} bounted the van face \mathbb{R} FIAI corrections. The Monte Carlo from the Monte Carlo fr \Box alrave to take for each α LVV corrections as $\frac{400}{400}$ and $\frac{1}{200}$ and $\frac{1}{200}$ for $\frac{1}{200}$ unich iamuy $E_{\alpha r, n, \alpha n}$ CM θ can rescale to include For non-SM: can rescale to include $f_{\text{actorical}}$ of \cap corrections but querently factorisable QCD corrections but currently α corrected taken as a factor Ω Γ h α corrections as have to take non-fac & EW corrections as We note that the non-factorisable NNLO α corrections are the only positive corrections are the only positive corrections, and uncertainty cancels the factorisable NNLO QCD cancels the factorisable NNLO QCD corrections. This is is in the factorisable NNLO QCD corrections. This is in this is in the factorisable NNLO QCD corrections. This is in this

Summary

Good progress in HH theory over the last few years

- Gluon fusion Full SM result: NLO
- Gluon fusion HTL result: N³LO (also differential)
- Vector Boson Fusion N³LO inclusive, NNLO differentially + NLO EW
- Progress matched by amazing work from the experiments

Uncertainties beyond scale variations are now relevant

- Mass scheme uncertainties at the level of >10% @ NLO
- Motivates studies of $m_T^{}$ dependence beyond 2-loop

Many other fascinating developments

(e.g. efforts to tackle backgrounds, EW effects, EFT fits, …)

I hope/expect that the anticipated experimental progress during Run 3 is matched by exciting theory progress

Thank you for listening

Self Coupling Considerations 1SINE λhhh/λhhh SM=3 10-5 $\overline{}$

For $gg \to HH$: m_{HH} is significantly modified by $\kappa_{\lambda} \neq 1$ due to large interference between ``boxes'' & ``triangles'' \overline{a} \overline{c} v v m

Results known to NLO (full), NNLO (FT_{approx}), N³LO (HTL) 300 (0.000) (0.000) (0.000) $\sqrt{2}$ \rightarrow approx \prime , \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16; de Florian, Fabre, Heinrich, Mazzitelli, Scyboz 21; Chen, Li, Shao, Wang 19;

Note: dip structure changes dramatically once m_T^2 dependence is included (artefact of Born vanishing exactly at this point in HTL)

Higgs Self-Coupling from Single Higgs Production

So far focused on HH production where λ_3 appears at LO Can also constrain this coupling from high-order effects in single Higgs production 3

 $\overline{5}$ t E.g. can constrain λ_3 below HH threshold from EW $\overline{}$ corrections to *e*+*e*[−] → *ZH*

McCullough 13 **McCullough 13**

 Δt l HC λ annears in main Higu At LHC, *λ*₃ appears in main Higgs production and decay channels *H*

diagrams with internal Goldstone lines. Gorbahn, Haisch 16, 19; Bizon, Gorbah Pagani 16: Maltoni Pagani Shivaji Zhar Pagani 16; Maltoni, Pagani, Shivaji, Zhao 17; Di Vita, Grojean, Panico, Riembau, Vant package [18, 19]. With these definitions the full form of Gorbahn, Haisch 16, 19; Bizon, Gorbahn, Haisch, Zanderighi 16; Degrassi, Giardino, Maltoni, Pagani 16; Maltoni, Pagani, Shivaji, Zhao 17; Di Vita, Grojean, Panico, Riembau, Vantalon 17 ¹²↵(*q*² Haisch Zandorighi 16: Dograssi Giardino Maltoni b rabon μ zahading into μ bograss. μ Grafan \mathcal{F} . Examples of one loop HH -dependent diagrams for the Higgs boson self-energy (a) and the single-Higgs boson self-energy (a) and the single-Higgs boson self-energy (a) and the single-Higgs boson self-energy (a) a $\widetilde{\mathsf{a}}$ orbahn, Haisch 16, 19; Bizon, Gorbahn, Haisch, Zanderighi 1 circle.