

ATLAS + CMS Non-resonant HH—bbbb

Daniel Guerrero and

Rafael Teixeira de Lima

on behalf of the ATLAS and CMS Collaborations

Outline

- The HH→ bbbb channel
- ATLAS and CMS Run-2 Overview
 - Jet tagging & Higgs reconstruction
 - Trigger
 - Event categorization
 - Background modeling
 - Discriminant observables
 - Systematics
 - Results: SM, anomalous kl and k2v
- Conclusions

CMS Experiment at the LHC, CERN Data recorded: 2016-Aug-13 15:04:59.113664 GMT Run / Event / LS: 278802 / 7164845 / 11

Resolved Boosted

The bbbb decay channel

It has the HH largest rate ~ 1500 SM events produced in the LHC Run-2 period (L~140 fb⁻¹)!

But searching for signal events is challenged by
the large production of multi-jet bkg. events (QCD multijet~90-95%, top quarks~5-10%)

H→ bb experimental fingerprint depends on Higgs pT

Experimental challenges:

- b quark jet or H jet identification w.r.t large usdg/c jet bkg
- Online trigger algorithms are complex
 - o Depends on L1 seed, HLT tracking, jet reco/cal, b-tagging, etc
 - Constrained by L1 rate, HLT CPU limit & output rate
 - Consistency with offline algorithms (e.g. b-tagging)
- Higgs boson reconstruction affected by
 - Large jet combinatorics
 - Missing energy from neutrinos in semi-leptonic B decays
 - Jet constituents from ISR, FSR & Pile-up
- Precise model and rejection of multijet bkg are crucial

Small-R jet b-tagging (resolved)

The b-jet candidates are identified using machine learning algorithms

ATLAS

Best performing AK4 b-jet tagger: DL1r

- DNN + RNN (tracks' impact parameters)
- 10% improvement in efficiency for same bkg rejection

b-jet candidates:

- Pass DL1r at 77% b-jet efficiency (measured in ttbar)
- Muon-in-jet information used to correct jet pT

CMS

Best performing AK4 b-jet tagger: <u>DeepJet</u>

- DNN multioutput classifier
- 10% eff. Improvement w.r.t previously used (DeepCSV)

b-jet candidates:

- Pass DeepJet WP with ~75% efficiency (measured in ttbar)
- DNN b-jet energy regression is used to correct jet pT

Higgs boson reconstruction (resolved)

The challenge: Four b-jet candidates → 3 pairing possibilities

Choose pairing that minimizes ΔR distance between jets in the leading Higgs candidate (H1) 90% accurate for SM ggF events

where 4 b-jets = 4 b-quarks from Higgs decays

CMS

Jet pairing based on m_{H1} - m_{H2} plane information

Very good performance (e.g. 96% accurate for SM ggF) Maximizing signal collection w/o bkg. sculpting near the mH

H-tagging & reconstruction (CMS boosted)

Best performing AK8 jet tagger: ParticleNet

- Architecture based on Graph Neutral Networks
- Mass-decorrelated version identifies 2-prong hadronic decays of highly boosted particles (e.g. X→bb)

$$D_{bb}$$
 discriminant = $P[X\rightarrow bb] / P[X\rightarrow bb] + P[QCD]$

- Input features:
 - Jet constitutents PF candidates & secondary vertices
- Performance: 0.1% bkg eff. at 50% signal eff:
 - Bkg rejection improved by a ~factor of 2 per jet than previously
- Same architecture is used for regression of the jet mass (m_{reg})

More details on 'ATLAS+CMS jet and flavor tagging' talk by Loukas tomorrow!

Trigger Strategy

ATLAS

CMS

2b2j: 2 b-tagged jets + 2 extra jets

- $p_T > 35$ GeV for all jets
- b-jet eff. between 40% and 70%
- Important for low m_{HH} events

2b1j: 2 b-tagged jets + 1 extra jet

- $p_T > 35$ GeV for b-jets, $p_T > 100 \sim 150$ GeV for extra jet
- b-jet eff. between 40% and 70%
- Important for high m_{HH} events

Resolved:

Triggers require 4 jets with 3 b-tagged jets

- **2016**:
 - 4j with pT> 45 GeV
 - 2j with pT > 30 GeV, 2j with pT> 90 GeV
- **2017** (2018):
 - 4j with pT > 40,45,60,75 GeV, HT> 300 (330) GeV

Boosted:

Combination of several single-jet and HT triggers:

- Requirements on:
 - HT, jet pT, Trimmed mass & double b-tagging
- Fully efficient for Jet pT>500 GeV

Event Categorization (ATLAS resolved)

Same analysis selection is performed in 2016, 2017 & 2018 datasets, L_{total}=126 fb⁻¹

Categories

$ \Delta\eta_{_{ m HH}} $	$ \Delta\eta_{_{ m HH}} $
< 1.5	> 1.5
VBF Cat	VBF Cat
1	2

ggF Cats.	$ \Delta\eta_{\rm HH} $ < 0.5	$0.5 > \Delta \eta_{\rm HH} $ $ \Delta \eta_{\rm HH} < 1.0$	
X _{HH} < 0.95	1	2	3
$0.95 > X_{HH} $ $X_{HH} < 1.6$	4	5	6

Common selection

ggF vs VBF separation

Top veto cut

$$X_{Wt} = \sqrt{\left(\frac{m_W - 80.4 \,\text{GeV}}{0.1 \,m_W}\right)^2 + \left(\frac{m_t - 172.5 \,\text{GeV}}{0.1 \,m_t}\right)^2} \quad X_{HH} = \sqrt{\left(\frac{m_{H1} - 124 \,\text{GeV}}{0.1 \,m_{H1}}\right)^2 + \left(\frac{m_{H2} - 117 \,\text{GeV}}{0.1 \,m_{H2}}\right)^2}$$

Signal region cut

$$X_{HH} = \sqrt{\left(\frac{m_{H1} - 124 \,\text{GeV}}{0.1 \,m_{H1}}\right)^2 + \left(\frac{m_{H2} - 117 \,\text{GeV}}{0.1 \,m_{H2}}\right)^2}$$

Event Categorization (CMS resolved)

Same analysis selection is performed in 2016 & 2017-2018 datasets, L_{total}=138 fb⁻¹

Event Categorization (CMS boosted)

Same analysis selection is performed in 2016, 2017 & 2018 datasets, L_{total}=138 fb⁻¹

Background estimation (resolved)

Data-driven multijet bkg model using 'low-btag' data to derive '4-btag' background distributions

Events

5000

3000

2000

1000

36 fb⁻¹ (13 TeV)

m_{H1} [GeV]

CMS

[GeV] 30 250

200

150

100

- 3b data → 4b full bkg
- Derived in CR data (ring)
 - Transfer factor (4b/3b)
 - Residual differences corrected via weights from
- BDT re-weightingApplied to SR (circle)
- Method is fully verified in validation region

CMS Preliminary

150 200

100

ATLAS

Similar to CMS method, but three main differences:

- Use 2b data instead of 3b (use 3b as validation)
- Split ring in two: nominal and alternative models
- Use DNN instead of BDT

Many validation regions:

- Shifted region (like CMS)
- 3b+1f region
- Reversed |η_{нн}| selection

Background estimation (CMS boosted)

ggF Categories

- QCD bkg. is derived using parametric alphabet method:

 - Fail region: j2 D_{bb} score < 0.95 & BDT>0.03 Model in pass region = fail region shape x t.f. (j2 m_{reg})
- ttbar bkg. is modeled from MC:
 - Correction from ttbar(had) & ttbar(semilep.) in CRs
 - ttbar recoil & D_{bb} shape corrections
- Other minor bkgs (Single H, VV, etc) from MC

VBF Categories

- QCD bkg derived using ABCD method:
 - Model D = Shape from C region x tf

- ttbar bkg is modeled from MC
 - Corrections from semileptonic tt events
 - Normalization & bb-mistagging SFs

More details on Data-driven QCD background methods talk by Matej tomorrow!

VBF

Discriminant observables (resolved)

The selected observables maximize the analysis sensitivity

ATLAS

CMS

ggF categories: BDT distribution

- Bkg model stats. enables the model of a BDT discriminant
- Discriminant is trained by category (16 variables)

VBF SM category: mHH distribution VBF BSM category: Counting experiment

Signal extraction performed by fitting signal region distributions of all categories/datasets

Discriminant observables (CMS boosted)

The selected observables maximize the analysis sensitivity

ggF categories: j2 regressed mass

138 fb⁻¹ (13 TeV) Events / 10 GeV QCD, ggF H, VBF H 12 S+B fit to data on most sensitive ggF category Data / pred 160 200 140 j_a m_{req} [GeV] VBF categories: mHH distribution (3 or 1 bin)

Signal extraction performed fitting all categories in signal and control regions

Systematics (resolved)

The bbbb resolved analyses are dominated by background estimate uncertainties!

ATLAS

CMS

Background uncertainties:

- Statistical: 2b statistics + DNN variation under bootstrapped deep ensembles (100 trainings)
- Alternative vs nominal estimate (CR1 vs CR2)
- 3b1f region non-closure
- Normalization uncertainty from 2b/4b CR

Background uncertainties:

- Statistical uncertainty in SR(3b) region (dominant)
- Transfer factor from CR 4b/3b regions
- Shape variation (Alternative CR definition vs nominal)
- Validation yields non-closure
- Validation limited statistical precision

ATLAS & CMS signal uncertainties

- Luminosity, PU, trigger
- b-tagging, jet scale and resolution,
- PS, PDF, factorization scales
- PS dipole recoil in VBF signals (CMS-only)
- Cross section & branching ratio

Systematics (CMS boosted)

Breakdown of the impact of systematics on measured SM signal strength (μ=3.5) grouped by their statistical, systematic and theoretical nature

Uncertainty source	Δ	μ
Statistical	+2.55	-2.30
Signal extraction	+2.32	-2.06
QCD multijet modeling	+1.12	-1.01
t t modeling	+0.28	-0.19
Systematic	+2.09	-0.89
Simulated sample size	+0.55	-0.55
$D_{ m bar{b}}$ selection	+0.72	-0.32
Jet energy and mass scale and resolution	+0.54	-0.39
Trigger selection	+0.26	-0.03
Luminosity measurement	+0.13	-0.04
Pileup modeling	+0.05	-0.06
Other experimental uncertainties	+0.05	-0.03
Theoretical	+0.63	-0.63
Total	+3.30	-2.47

Results: SM

No excess of events is observed relative to the background-only hypothesis 95% CL upper limits are set on the SM HH (ggF+VBF) production

ATLAS

Observed (expected) limit (resolved):

5.4 (8.1) x SM prediction

(~3 x more sensitive than before)

CMS

Observed (expected) limit (resolved):

3.9 (7.8) x SM prediction

(~5 x more sensitive than before)

Best observed constraint on bbbb channel!

Observed (expected) limit (boosted):

9.9 (5.1) x SM prediction

(~30 x more sensitive than before)

Significant improvements using full Run-2 data!

Results: Anomalous κ_λ

95% CL upper limits are set on the HH production cross section vs k_{λ} values

Obs. (exp.) constraint (resolved) [-3.5,11.3] ([-5.4,11.4])

Obs. (exp.) constraint (resolved) [-2.3, 9.4] ([-5.0,12.0]) Obs. (exp.) constraint (boosted) [-9.9,16.9] ([-5.1,12.2])

Results: Anomalous K2V

95% CL upper limits are set on the HH production cross section vs K_{2V} values

Obs. (exp.) constraint (resolved) [0, 2.1] ([-0.1,2.1])

Obs. (exp.) constraint (resolved)
[-0.1, 2.2] ([-0.4,2.5])
Obs. (exp.) constraint (boosted)
[0.6,1.4] ([0.7,1.4])

The K_{2V}=0
hypothesis
is excluded
for the first time,
with a 6.3
s.d. significance
(K_λ=K_V=K_t=1)

Conclusions

The bbbb channel is one of the main players in the HH game

Significant improvements in both ATLAS and CMS Run-2 analyses!

- Sophisticated b-tagging & Higgs-tagging using AI/ML
- New jet pairing methods
- Dedicated ggF and VBF mode categorizations
- Novel background estimation using ML-based reweighting

Looking forward to the future bbbb analyses!

- How can we improve our background estimate?
- How can we make it more sensitive in the low mass region?
- How can we cope with the increasing trigger thresholds in the (HL) LHC's future?

Stay tuned!

Non-resonant HH production at the LHC

SM production gives access direct access to self-coupling (λ) \rightarrow Reconstruct the Higgs potential It's hard to measure it at current LHC datasets (let's see how far we can go!)

BSM physics may modify Higgs couplings or activate vertices → Potential for discovery at the LHC!

■ Anomalous Higgs couplings are studied w.r.t. the SM using a K-framework, e.g. $K_{\lambda} = \lambda / \lambda^{SM}$

Small-R b-tagging calibration

ATLAS

DL1r calibration plots

CMS

DeepJet calibration plots

Production Mode BDT (CMS resolved)

Target: Pre-VBF events

Signal (S): VBF-HH (k2v=2)

- Signature with strongest contribution from longitudinal scattering amplitude V(L)V(L)→HH
- VBF-HH (k2v=0) has similar response

Background (B): NLO SM ggF-HH

Variable	Meaning
$p_T(H_1) (p_T(H_2))$	Tranverse momentum of the H ₁ (H ₂) candidate
$p_T(j_1) (p_T(j_2))$	Tranverse momentum of the j ₁ (j ₂) candidate
$ \eta\left(\mathrm{jj} ight) $	VBF-jet pair pseudorapity
M(jj)	VBF-jet pair invariant mass
$\Delta R(H_1, H_2)$	ΔR distance between two Higgs bosons
$\Delta R(H_1, j_1)$	ΔR distance between H_1 and j_1
$\Delta R(H_1, j_2)$	ΔR distance between H_1 and j_2
$\Delta R(H_2, j_1)$	ΔR distance between H_2 and j_1
$\Delta R(H_2, j_2)$	ΔR distance between H_2 and j_2
$ \cos(\theta)^*(j1) $	$ \cos(\theta) $ of j_1 in the six-jet center of mass frame
$ \cos(\theta)^*(j2) $	$ \cos(\theta) $ of j_2 in the six-jet center of mass frame
H1-centrality · H2-centrality	Product of the Higgs boson centralities

where: H1-centrality · H2-centrality:
$$\exp[-(\frac{\eta(H_1)-\eta_{avg}}{\Delta\eta})^2-(\frac{\eta(H_2)-\eta_{avg}}{\Delta\eta})^2]$$
, where:
$$\Delta\eta=\eta(j_1)-\eta(j_2) \qquad \eta_{avg}=\frac{\eta(j_1)+\eta(j_2)}{2}$$

BDT-reweighting variables (CMS resolved)

ggF categories

BDT Reweighter Input variables

Regressed p_T of the leading-p_T b jet of the H₁ candidate

Regressed p_T of the trailing-p_T b jet of the H₁ candidate

Regressed p_T of the leading-p_T b jet of the H₂ candidate

Regressed p_T of the trailing-p_T b jet of the H₂ candidate

Mass of the H_1 candidate, $M(H_1)$

Mass of the H₂ candidate, M(H₂)

Mass of the Higgs pair system, mHH

Transverse momentum of the H_1 candidate, $P_T(H_1)$

Transverse momentum of the H_2 candidate, $P_T(H_2)$

Pseudorapidity separation between the two Higgs candidates, $\Delta \eta (H_1, H_2)$

 ΔR distance between two b jets of the H₁ candidate, $\Delta R(H_1(bb))$

 ΔR distance between two b jets of the H₂ candidate, $\Delta R(H_2(bb))$

 $|\cos(\theta)^* (H)|$ in HH frame

 $|\cos(\theta)^*|$ (b) in H₁ frame

Sum of four b jets' regressed p_T

Transverse momentum of the HH system, $p_T(HH)$

Number of tight b-tags in 3 hightest b-tags

Sum of 3b's resolution scores

Minimal ΔR distance between two b jets, Min $|\Delta R$ (bb)

Maximum pseudorapidity separation between two b jets, Max $|\Delta\eta$ (bb)|

VBF categories

BDT Reweighter Input variables

Regressed p_T of the leading-p_T b jet of the H₁ candidate

Regressed p_T of the trailing-p_T b jet of the H₁ candidate

Regressed p_T of the leading-p_T b jet of the H₂ candidate

Regressed p_T of the trailing-p_T b jet of the H₂ candidate

Mass of the H_1 candidate, $M(H_1)$

Mass of the H_2 candidate, $M(H_2)$

Mass of the Higgs pair system, mHH

Transverse momentum of the H_1 candidate, $P_T(H_1)$

Transverse momentum of the H_2 candidate, $P_T(H_2)$

Pseudorapidity separation between the two Higgs candidates, $\Delta \eta (H_1, H_2)$

Azimuthal angle separation between the two Higgs candidates, $\Delta \phi(H_1, H_2)$

Mass of the VBF-jet pair system, M(jj)

Pseudorapidity separation between the two VBF jets, $\Delta \eta$ (j1, j2)

PMMVA score

NN-reweighting variables (ATLAS resolved)

ggF	VBF
 log(p_T) of the 2nd leading Higgs boson candidate jet log(p_T) of the 4th leading Higgs boson candidate jet log(ΔR) between the closest two Higgs 	 Maximum di-jet mass out of the possible pairings of the four Higgs boson candidate jets Minimum di-jet mass out of the possible pairings of the four Higgs boson candidate jets
boson candidate jets 4. $\log(\Delta R)$ between the other two Higgs	3. Energy of the leading Higgs boson candidate
 boson candidate jets 5. Average absolute η value of the Higgs boson candidate jets 	4. Energy of the subleading Higgs boson candidate
6. $\log(p_{\mathrm{T}})$ of the di-Higgs system 7. ΔR between the two Higgs boson candidates	5. Second smallest ΔR between the jets in the leading Higgs boson candidate (out of the three possible pairings for the leading Higgs candidate)
8. $\Delta \phi$ between jets in the leading Higgs boson candidate	6. Average absolute η value of Higgs boson candidate jets
9. $\Delta \phi$ between jets in the subleading Higgs boson candidate	7. $\log(X_{Wt})$ 8. Trigger class index as one-hot encoder
10. $\log(X_{Wt})$ 11. Number of jets in the event 12. Trigger class index as one-hot encoder	9. Year index as one-hot encoder (for years inclusive training)

Discriminant observables (CMS resolved)

Chosen observables maximize the analysis sensitivity
Their definition is constrained by available statistics of the bkg model

ggF categories: BDT distribution

- Bkg model enables to model a BDT discriminant
- Discriminant is trained by category
 - Signal (SM ggF) vs background (bkg model)
 - o 16 variables

VBF category 1,2:

• mHH distribution, counting experiment

BDT input variables		
M(H1), M(H2), M(HH)	cos*θ(b) in H1-frame	
pT(H1), pT(H2), pT(HH)	Max Δηbb	
Scalar sum of 4b's pT	Min ARbb	
$\Delta\eta(H1,H2)$, $\Delta Rbb(H1)$, $\Delta Rbb(H2)$	Sum of 3b's resolution scores	
cos*θ(H) in HH-frame	N. tight b-tags in 3 highest b-tags	

Goodness of fit tests showed that data & bkg model are compatible in all eight observables (p>23%)

Likelihood scans (ATLAS resolved)

Likelihood scans (CMS resolved)

Likelihood scans (CMS boosted)

