

ATLAS and CMS non-resonant $HH \rightarrow bb\tau\tau$

Francesco Brivio, Yanlin Liu on behalf of the ATLAS and CMS Collaborations

Introduction

- Higgs pair-production allows to directly measure $\kappa_{\lambda}^{}$ and $\kappa_{_{2V}}^{}$
 - ggF: 31.05 fb, VBF: 1.73 fb

- $bb\tau\tau$ final state:
 - 7.3%, large BR
 - relatively clean signature compared to other channels with higher BR
- Analysis performed in two channels depending on *ττ* decay:
 - $au_{had} au_{had}$ (BR: 42%)
 - \circ τ_{lep}τ_{had} (BR: 45.6%) → split in τ_eτ_h/τ_μτ_h for CMS

F. Brivio, Y. Liu - Higgs Pairs Workshop 2022 - Dubrovnik

Trigger Strategy

ATLAS and CMS use a similar trigger strategy based only on leptons and $au_{
m had}$

- $\tau_{had}\tau_{had}$:
 - single τ trigger with p_T of 80-160 GeV
 - di- τ trigger with p_T of 35 and 25 GeV Ο
 - In 2016, 1 jet (> 25 GeV) at L1
 - 2017-2018, 1 jet (> 25 GeV) or 2 jets (> 12 GeV) at L1

- $\tau_{\text{lep}} \tau_{\text{had}}$ o **SLT**: single lepton trigger with 24-26 (20-26) GeV for e (µ);
 - **LTT**: lepton+ τ_{had} trigger with 17 (14) GeV Ο for e (µ) and 25 GeV for τ_{had}
 - From 2017, 1 jet (> 25 GeV) or 2 jets (> 12 GeV) at L1

- $\tau_{had} \tau_{had}$.
 - di- τ trigger with p_r>35 GeV
 - di- τ (p_r>25 GeV) + 2 jets (p_r>45/115 GeV)
- $\tau_{\rm lep} \tau_{\rm had}$
 - single-e with p_r>25 (32) GeV (2017-2018)
 - \circ e- τ trigger with
 - ele p₋>24 GeV
 - τ p_τ>30 GeV
 - Single- μ with p_r>22 (24) GeV (2017-2018)
 - $\circ \mu$ - τ trigger with
 - µ p₁>19 (20) GeV (2017-2018)
 - τ p₁>20 (27) GeV (2017-2018)

- 2 b-jets (DNN-based tagger, 77%)
 - Mis-tag rate for light jet is 0.06%
- $2 \tau_{hads}$ or $1\tau_{had}$ + 1 e/µ with OS • τ_{had} : RNN-based Loose WP (1-p: 85%, 3-p: 75%)
- Trigger-dependent $p_{\rm T}$ on e/µ/ $\tau_{\rm had}$ and jets
- e/ μ veto applied for $\tau_{had} \tau_{had}$
- Exactly 1 e/ μ and 1 τ_{had} for $\tau_{lep}\tau_{had}$
- m₁₇ (from <u>MMC</u>) > 60 GeV
- $m_{bb} < 150 \text{ GeV for } \tau_{lep} \tau_{had}$

- 2 jets with p_T >20 GeV and $|\eta|$ <2.5
 - Select 2 b-jet candidates with a dedicated recurrent NN (HH-bTag)
 - Efficiency to tag $H \rightarrow bb \sim 95\%$
- Two isolated and OS leptons
 - $\circ~~p_{_{T}}$ threshold dependent on trigger
 - τ_{had} candidates discriminated vs e/µ/jets using DeepTau NN (<u>CMS-TAU-20-001</u>)
 - Medium WP (70% eff vs jets)
 - Extra lepton veto for all channels
- Elliptical mass cuts on m_{ττ}/m_{bb}

CMS: Mass Cuts

- Elliptic mass cut on $m_{\tau\tau}$ (<u>SVFit algo.</u>) and m_{bb} (jet vis. mass sum)
 - Minimize background and keep signal efficiency > 90%
 - Removes significantly outlying background events where no signal is expected
 - Actual discrimination between signal and background is left to the DNN
- Optimized for different categories

- Resolved categories :
$$\frac{(m_{\tau\tau} - 129 \ GeV)^2}{(53 \ GeV)^2} + \frac{(m_{bb} - 169 \ GeV)^2}{(145 \ GeV)^2} < 1$$

- Boosted category :
$$\frac{(m_{\tau\tau} - 128 \ GeV)^2}{(60 \ GeV)^2} + \frac{(m_{bb} - 159 \ GeV)^2}{(94 \ GeV)^2} < 1$$

- No mass cut is applied in the VBF categories

Background Estimation

- ttbar with true τ_{had} and Z + heavy-flavor: shape from simulation, normalizations determined in the fit
- Single Higgs and other processes from simulation
- Jets→fake τ_{had} background: estimated with data-driven approach (more details in the coming slides)

- ttbar and DY+jets from simulation with norm. corrected from data CR
 - 18 Z \rightarrow µµ+jets CRs for DY
 - 2 b-tag + inv. mass cut for ttbar
- QCD multijet fully data-driven
 - ABCD method inverting tau pair selections

- Other backgrounds from simulation
- No special treatment for fake τ_{had}

ATLAS: Fake Background in $\tau_{\rm lep} \tau_{\rm had}$

- Fake factor (FF) derived for ttbar and multi-jet separately
 - \circ Split in 1/3-prong and derived as a function of p_T
- Combined FFs applied to scale Anti-ID SR template to obtain fake background in SR

ATLAS: Multi-jet Fake Background in $au_{had} au_{had}$ OS, 2 b-tagged jets SS, 1 b-tagged jet SS, 2 b-tagged jets SR ID ID $TF_{1\rightarrow 2 \ b-tags}$ FF_{1 b-tag} SR Template Anti-ID Anti-ID $FF = FF_{1 \ b-tag} \times TF_{1 \rightarrow 2 \ b-tags}$ Non-multi-jet subtracted

- For multi-jet, FF derived in 1 b-tag same-sign CR
- Transfer factors derived to account for extrapolation from 1 b-tag to 2 b-tag events

- For ttbar, fake τ_{had} from simulation
- Scale factors: applied to correct τ_{had} misidentification efficiencies
 - 1-prong: ~1 for <40 GeV, ~0.6 for >70 GeV
 - 3-prong: ~20% larger than 1-prong

Event Categorization

• Three trigger-dependent categories: $\tau_{had}\tau_{had}$, $\tau_{lep}\tau_{had}$ SLT and $\tau_{lep}\tau_{had}$ LTT

 SLT and LTT are orthogonal with LTT only including low p_T e/µ

- 3 channels based on the tau pair decay
 - $\tau_{had}\tau_{\mu}$: single lep. and lep.+tau triggers • $\tau_{had}\tau_{e}$: single lep. and lep.+tau triggers
 - $_{\circ}$ $\tau_{had}\tau_{had}$: di-tau and di-tau+VBF triggers
- Further categorization based on the number and flavor of the jets
 Resolved, boosted and VBF-like
 8 categories defined
- 3 channels x 8 categories x 3 years for a total of 72 categories in the final fit

define 5 categories for targeting the relevant physics processes (GGF, VBF and backgrounds) All categories are mutually exclusive by construction

ATLAS Signal Extraction

- MVA trained in each category to separate SM signal and total background
- $\tau_{had}\tau_{had}$: boosted decision tree, $\tau_{lep}\tau_{had}$: neural network
- MVA output used as discriminant for fitting

CMS: Signal Extraction

- DNN trained to separate SM non-resonant signal vs all backgrounds
 - All channels and categories are considered in the training together
 - "Categorical" feature used as input (year, category, channel...)
- Binned DNN score distribution used as final discriminant for signal extraction

Input Variables for Training

Variable	Thad Thad	$\tau_{\rm lep} \tau_{\rm had} { m SLT}$	$\tau_{\rm len} \tau_{\rm had} { m LTT}$	Input Features	
	1	icp nuu		Continuous	Categorical
<i>m_{HH}</i>	1			b-tag score of 1^{st} b-jet	Event is <i>boosted</i> or not
$m_{\tau\tau}^{\text{MNNC}}$	v			m_{HH} kinematic fit	Presence of VBF-candidates
m_{bb}				v^2 kinematic fit	$\tau \tau$ decay mode
$\Delta R(\tau, \tau)$			1	$\sum_{m}^{\chi} SV fit$	Highest b tog WD of 1^{st} b jot
$\Delta R(b,b)$	1	1		$m_{\tau\tau}$	Highest D-tag WP of 1 D-jet
$\Delta p_{ m T}(\ell, au)$		\checkmark	1	$\Delta R(au, au) \cdot p_T(H_{ au au}^{Svft})$	Highest b-tag WP of 2^{na} b-jet
Sub-leading <i>b</i> -tagged jet $p_{\rm T}$		1		$\Delta R(au, au)$	Year
$m_{ au}^W$		1		m_T and p_T of both taus	
$E_{\mathrm{T}}^{\mathrm{miss}}$		1		$\Delta \phi(H_{ au au}^{SVfit}, MET)$	
$\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} \phi$ centrality		1		m_{bb}	
$\Delta \phi(\ell au, bb)$		1		$\Delta \phi(H_{ au au}^{SVfit},H_{bb})$	
$\Delta \phi(\ell, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$			1	$p_T(H_{bb})$	
$\Delta \phi(\ell au, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$			1		
ST			1	Final continuous features selected from a	
				starting pool of over a 100 features	
				U P P P	

C	MS	Mucri Sciencid
	K	Compa

Uncertainty source	Non-resonant HH
Data statistical	81%
Systematic	59%
$t\bar{t}$ and Z + HF normalisations	4%
MC statistical	28%
Experimental	
Jet and $E_{\rm T}^{\rm miss}$	7%
<i>b</i> -jet tagging	3%
$ au_{ m had-vis}$	5%
Electrons and muons	2%
Luminosity and pileup	3%
Theoretical and modelling	
Fake- $\tau_{had-vis}$	9%
Top-quark	24%
$Z(\rightarrow \tau \tau) + HF$	9%
Single Higgs boson	29%
Other backgrounds	3%
Signal	5%

- Main sources of syst. unc.:
 - Theory uncertainty on ggF HH cross section: $^{+6\%}_{-23\%}$ (scale + m_t) ± 3 % (PDF + α_S)
 - Statistical fluctuations affecting multijet bkg estimation
 - Uncertainties on mis-modeling of jet and tau ID and reco in simulation.
- Total effect of syst. unc. on final limit is ~15%

Upper limit on Cross Section

ATLAS-CONF-2021-030

(soon to be submitted to journal)

- Obs. (exp.) limit at 95% CL:
 4.7 (3.9) × σ_{sM}
 - 4x improvement over 36.1 fb⁻¹
 <u>result</u> (obs.: 12.7, exp.: 14.8)
- Around half of the gain from improved reconstruction and identification of τ_{had} and b-jets, as well as the MVA and fake strategy

CMS-PAS-HIG-20-010

(soon to be submitted to journal)

- Obs. (exp.) limit at 95% CL:
 3.3 (5.2) × σ_{sM}
 - 5x improvement over 35.9 fb⁻¹
 <u>PLB publ.</u> (obs.: 30, exp.: 25)
- Improvement mainly from:
 - Renewed trigger strategy
 - Large use of DNNs for:
 - Obj. reco and identification
 - Signal vs bkg. discrimination

ATLAS-CONF-2021-052

<u>CMS-PAS-HIG-20-010</u> (soon to be submitted to journal)

CMS: VBF HH Results

- Dedicated VBF HH analysis
 - Ad hoc triggers and categorization
- Obs. (exp.) limit at 95% CL:
 124 (154) × σ_{SM}^{VBF}
 - Most stringent limit 95% CL on $\sigma(pp \rightarrow qqHH)$ at the moment
- Obs. (exp.) constraint on κ_{2V} : -0.4 $\leq \kappa_{2V} \leq 2.6$ (-0.6 $\leq \kappa_{2V} \leq 2.8$)

Summary

The ATLAS and CMS HH \rightarrow bb $\tau\tau$ non-resonant analyses with Run 2 data have been presented

- Main similarities
 - Trigger strategy based on lepton/tau-triggers
 - Signal extraction based on MVA methods (BDT, DNN)
- Main differences
 - Background estimation:
 - ATLAS has dedicated jets \rightarrow fake τ_{had} method
 - Event categorization: CMS has 3 channels ($\tau\tau$ DM) x 8 categories (jets) + dedicated VBF search
- Results
 - \circ ATLAS and CMS sets comparable limits on inclusive HH production and κ_{λ}
 - ATLAS: 4.7 (3.9) × $\sigma_{SM'}$ -2.4 ≤ κ_{λ} ≤ 9.2 (-2.0 ≤ κ_{λ} ≤ 9.0)
 - CMS : 3.3 (5.2) × $\sigma_{SM'}$ -1.8 ≤ κ_{λ} ≤ 8.8 (-3.0 ≤ κ_{λ} ≤ 9.9)
 - CMS also sets limit on VBF HH production and κ_{2V} : 124 (154) × σ_{SM}^{VBF} ATLAS: new non-resonant analysis with optimization on $\kappa_{\lambda}/\kappa_{2V}$ using ggF/VBF is underway

ATLAS HL-LHC Projection

Uncertainty Scenario	95% CL Upper Limit	Significance $[\sigma]$	Signal Strength Precision
No syst. unc.	0.49	4.0	0.27
Baseline	0.71	2.8	0.39
Run 2 syst. unc.	1.37	1.5	0.69
MC stat. unc. neglected	0.99	2.2	0.51
Theoretical unc. halved	1.07	1.7	0.58

Uncertainty Scenario	Likelihood Scan 1 σ CI	Likelihood Scan 2σ CI
No syst. unc.	[0.5, 1.6]	$[0.1, 2.5] \cup [4.5, 6.5]$
Baseline	$[0.3, 1.9] \cup [5.2, 6.7]$	[-0.3, 7.4]
Run 2 syst. unc.	[-0.2, 7.3]	[-1.2, 8.3]
MC stat. unc. neglected	$[0.0, 2.2] \cup [4.9, 7.1]$	[-0.8, 8.0]
Theoretical unc. halved	$[0.0, 2.9] \cup [4.2, 7.1]$	[-0.8, 7.9]

Missing Mass Calculator

• Allows for a complete reconstruction of event kinematics in $\tau\tau$ final state

arXiv:1012.4686

ATLAS Signal Acceptance × Efficiency

- The acceptance times efficiency for the non-resonant ggF+VBF evaluated w.r.t. targeted τ decay modes
- $\tau_{had} \tau_{had}$: 4.0%, $\tau_{lep} \tau_{had}$ SLT: 4.0%, $\tau_{lep} \tau_{had}$ LTT: 1.0%

mHH Distributions

F. Brivio, Y. Liu - Higgs Pairs Workshop 2022 - Dubrovnik

CMS: HH-bTag

To **identify the b-jet pair** from $H \rightarrow bb$ for the $HH \rightarrow bb\tau\tau$ final state we use specially trained DNN (**HH-btag**)

- Using information about b tag quality as well as the kinematic of the event as NN inputs
- Generator level information is used as the ground truth
- ★ The training and testing were done using all available nonresonant and resonant $HH \rightarrow bb\tau\tau$ Run 2 sample
- Recurrent NN assigns a score to each jet in the event
- Bayesian optimization to chose best NN hyperparameters

NN architecture

Final NN parameters: 5 LSTM layers (75 units/layer) 13 dense layers (15 units/layer) Trainable params $\approx 225k$

CMS: multi-classification DNN

We define 5 VBF categories associated to the relevant physics processes

see slide 13

 Each event is assigned a probability estimate to belong to categories using multi-class DNN

Concept of the DNN-based event categorization

DNN architecture