

Overview of resonant HH/HS/SS production

Rui Santos ISEL & CFTC-UL

Based a lot on e-Print: 2112.12515, in collaboration with H. Abouabid, A. Arhrib, A. Azevedo, J. Falaki, P. Ferreira, M. Mühlleitner

Higgs Pairs Workshop 2022

1 June 2022

Higgs Pair Production - probing the shape of the potential

• SM Higgs pair production at the LHC - dominant process: Gluon fusion

* mediated by top and bottom loops

* SM: destructive interference triangle and box diagrams

• Cross section:
$$\sqrt{s} = 13 \text{ TeV}$$
: $\sigma_{tot} = 31.05^{+6\%}_{-23\%} \text{ fb}$ [Grazzini eal'19; Baglio eal,'20]
for extensive list of refs. see |di Micco eal'19]

at FT_{approx} : full NNLO QCD in the heavy-top-limit with full LO and NLO mass effects and full mass dependence in the one-loop double real corrections at NNLO

• Challenge: small cross sections and large QCD backgrounds

New Physics Effects in Higgs Pair Production

Cross section: - different trilinear couplings - different Yukawa couplings
 - new particles in the loop - resonant enhancement

• Example NMSSM:

[taken from Dao, Mühlleitner eal'13]

New Physics Effects in Higgs Pair Production

• Example: extended sector only

• Example: extension with a strange dark sector

[thanks to D. Neacsu]

R. Santos, Higgs Pairs Workshop, 1 June 2022

Varying the SM couplings

- LO Higgs pair production cross section when we vary the SM Higgs top-Yukawa coupling (upper left), the trilinear Higgs selfcoupling (upper right) and both couplings (lower) while keeping all other couplings fixed to the SM values.
- Section drops to zero (modulo b-quark contribution) for $y_{+} = 0$.

Experimental Results - Limits on Trilinear Higgs Self-Coupling

Extensions of the SM

	CxSM ($RxSM$)	2HDM	C2HDM	N2HDM
Model	SM+Singlet	SM+Doublet	SM+Doublet	2HDM+Singlet
Scalars	$h_{1,2,(3)}$ (CP even)	H, h, A, H^{\pm}	$H_{1,2,3}$ (no CP), H^{\pm}	$h_{1,2,3}$ (CP-even), A, H^{\pm}
Motivation	DM, Baryogenesis	$+ H^{\pm}$	+ CP violation	+
 There is a 1 and/or heav From the 24 are present. Models (exc They all hav You get a fe no definite a In case all n mixing angle They can ha 	25 GeV Higgs (other sca ier). -DM on, tan β=v ₂ /v ₁ . Also ept singlet extensions) of e ρ=1 at tree-level. ew more scalars (CP-odd CP) eeutral scalars mix there es ive dark matter candidat	lars can be lighter o charged Higgs can be CP-violating or CP-even or with will be three res (or not)	RxSM CxSM GM C2HD	NMSSM LHC N2HDA 2HDM

The potentials

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - m_{12}^{2} (\Phi_{1}^{\dagger}\Phi_{2} + h.c.) + \frac{m_{S}^{2}}{2} \Phi_{S}^{2}$$

+ $\frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger}\Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger}\Phi_{1}) (\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger}\Phi_{2}) (\Phi_{2}^{\dagger}\Phi_{1})^{2}$
+ $\frac{\lambda_{5}}{2} \left[(\Phi_{1}^{\dagger}\Phi_{2}) + h.c. \right] + \frac{\lambda_{6}}{4} \Phi_{S}^{4} + \frac{\lambda_{7}}{2} (\Phi_{1}^{\dagger}\Phi_{1}) \Phi_{S}^{2} + \frac{\lambda_{8}}{2} (\Phi_{2}^{\dagger}\Phi_{2}) \Phi_{S}^{2}$

with fields

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \rho_1 + i\eta_1) \end{pmatrix} \qquad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \rho_2 + i\eta_2) \end{pmatrix} \qquad \Phi_S = v_S + \rho_S$$

Particle (type) spectrum depends on the symmetries imposed on the model, and whether they are spontaneously broken or not. There are two charged particles and 4 neutral.

The model can be CP violating or not.

• m_{12}^2 and λ_5 complex <u>C2HDM</u>

magenta \implies SM

softly broken Z_2 : $\Phi_1 \rightarrow \Phi_1$; $\Phi_2 \rightarrow -\Phi_2$; $\Phi_S \rightarrow \Phi_S$ exact Z'_2 : $\Phi_1 \rightarrow \Phi_1$; $\Phi_2 \rightarrow \Phi_2$; $\Phi_S \rightarrow -\Phi_S$

magenta + blue \implies RxSM (also CxSM)

	Model	Higgs Spectrum	In principle possible Higgs pair final states from resonant production
	R×SM	`dark phase': H _{SM} , DM	DMDM
	SM+real singlet	`broken phase´: H _{SM} , S	H _{SM} H _{SM} SS
,	TRSM SM+2real singlets	`broken phase´ : H _{SM,} H1,H2	$\begin{array}{cccc} H_{5M}H_{5M} & H_1H_1 & H_2H_2 \\ H_1H_2 & H_{5M}H_1 \end{array}$
	CxSM	`dark phase': H _{SM} ,S,DM	H _{SM} H _{SM} SS DMDM
	SM+complex singlet	`broken phase´: H _{SM} ,H ₁ ,H ₂	$\begin{array}{cccc} H_{SM}H_{SM} & H_1H_1 & H_2H_2 \\ & H_1H_2 & H_{SM}H_1 \end{array}$
	2HDM 2 Higgs doublets	CP-conserving: H _{SM} ,H,A	H _{SM} H _{SM} HH
	MSSM 2 Higgs doublets, SUSY!	CP-conserving: H _{SM} ,H,A	H _{SM} H _{SM} no HH (due to constraints)
	C2HDM 2 doublets, 3 Higgses mix	CP-violating: H _{SM} ,H ₁ ,H ₂	$\begin{array}{cccc} H_{5M}H_{5M} & H_1H_1 & H_2H_2 \\ H_1H_2 & H_{5M}H_1 \end{array}$
	N2HDM 2 doublets, 1 real singlet	H _{SM} ,H ₁ ,H ₂ ,A	$\begin{array}{cccc} H_{SM}H_{SM} & H_{1}H_{1} & H_{2}H_{2} \\ & H_{1}H_{2} & H_{SM}H_{1} \end{array}$
	2HDM+S 2 doublets + 1 complex singlet	H _{SM} ,H ₁ ,H ₂ ,A ₁ ,A ₂	$\begin{array}{c} H_{SM}H_{SM} H_1H_1 H_2H_2 \\ H_{SM}H_1 H_{SM}A_1 H_1H_2 A_1H_1 A_1H_2 \end{array}$
	NMSSM SUSY! 2 doublets + 1 complex singlet	H_{SM} , H_1 , H_2 , A_1 , A_2	H _{SM} H _{SM} H ₁ H ₁ H _{SM} H ₁ H _{SM} A ₁ A ₁ H ₁ (no H ₂ H ₂ ,A ₁ H ₂ ,H ₁ H ₂ ← constraints)

Singlet

Doublet

Doublet+Singlet

Models

Model	Higgs Fields	Spectrum
R2HDM	2 SU(2) doublets, CP-conserving	h, H, A, H⁺
C2HDM	2 SU(2) doublets, CP-violating	H ₁ , H ₂ , H ₃ , H⁺
N2HDM	2 SU(2) doublets, 1 real singlet, CP-conserving	H ₁ , H ₂ , H ₃ , A , H ⁺
NMSSM	2 SU(2) doublets, 1 complex singlet super- field, CP-conserving	H ₁ , H ₂ , H ₃ , A ₁ , A ₂ , H ⁺

h₁₂₅ couplings (gauge)

h₁₂₅ couplings (Yukawa)

Type I $\kappa'_U = \kappa'_D = \kappa'_L = \frac{\cos \alpha}{\sin \beta}$ **Type II** $\kappa_U^{\prime\prime} = \frac{\cos\alpha}{\sin\beta}$ $\kappa_D^{\prime\prime} = \kappa_L^{\prime\prime} = -\frac{\sin\alpha}{\cos\beta}$ **Type F(Y)** $\kappa_U^F = \kappa_L^F = \frac{\cos \alpha}{\sin \beta}$ $\kappa_D^F = -\frac{\sin \alpha}{\cos \beta}$ **Type LS(X)** $\kappa_U^{LS} = \kappa_D^{LS} = \frac{\cos\alpha}{\sin\beta}$ $\kappa_L^{LS} = -\frac{\sin\alpha}{\cos\beta}$

These are coupling modifiers relative to the SM coupling. May increase Yukawa relative to the SM.

III = I' = Y = Flipped = 4... IV = II' = X = Lepton Specific= 3...

 $Y_{C2HDM} = \cos \alpha_2 Y_{2HDM} \pm i\gamma_5 \sin \alpha_2 \tan \beta (1/\tan \beta)$ $Y_{N2HDM} = \cos \alpha_2 Y_{2HDM}$

Overview of resonant production

Remarks

- Scan in parameter spaces of all models to check for compatibility with theoretical and experimental constraints (using ScannerS [Coimbra,Sampaio,Santos,'13],[MM,Sampaio,Santos,Wittbrodt,'20]); ATLAS-CONF-NOTE-2021-030
 Higgs pair exclusion limits included beyond those in HiggsBounds: bbbb [ATLAS,1804.06174], bbγγ
 [ATLAS,1807.04873], bbττ [ATLAS,1808.00336], bbττ [ATLAS,2007.14811], bbWW [ATLAS,1811.04671], bbZZ
 [CMS,2006.06391], WWγγ [ATLAS,1807.08567], WWWW [ATLAS,1811.11028]
- Computation of Higgs pair production including non-resonant and resonant production with HPAIR [Spira] for C2HDM [Gröber,MM,Spira, 17], NMSSM [Dao,MM,Streicher,Walz, 13], 2HDM [MM], N2HDM [MM]: computes NLO Born-improved HTL cxn
- Plots presented in the following at LO (time saving in large scans) multiplied by 2 (to approximate NLO value); NLO QCD HTL: K-factor ~1.4-.1.9 [Gröber,MM,Spira, 17]; benchmark points will include NLO corrections calculated with HPAIR

Allowed SM-like Higgs in each model

What is resonant?

Additional Higgs bosons H_k - possible resonant enhancement of the di-Higgs cross section.

- If $m_{H_k} < m_{H_i} + m_{H_j}$ clear case of "non-resonant" production.
- If $m_{H_k} > m_{H_i} + m_{H_i}$, resonance contribution may be suppressed (small couplings, large masses, large widths or destructive interference).

From an experimental point of view, the cross section would not be distinguishable from "nonresonant" production then. So our recipe is:

- HiggsBounds turned off for di-Higgs.
- Use Sushi to calculate $\sigma(H_k)$, for all possible intermediate resonances H_k (NNLO QCD).
- Calculate $\sigma(H_k) \times BR(H_k \rightarrow H_{SM}H_{SM})$ and compare with experiment.
- Exception exp. limits assume narrow resonances, keep points if $(\Gamma_{tot}(H_k)/m_{H_k})_{limit} > 5\%$.

Final states: most recent 4b, (2b)(2r), (2b)(2y), (2b)(2W), (2b)(ZZ), (2W)(2y) and 4W

Suppress interfering Higgs signals by forcing any other neutral scalar mass to deviate by more than ± 2.5 GeV from $m_{H_{SM}}$.

What is resonant? The N2HDM-I

<u>Impact from resonant searches (N2HDM-I with H₁ SM-like Higgs)</u>. Yellow points passed described constraints. $\sigma(H_k) \times BR(H_k \rightarrow H_{SM}H_{SM})$ with SusHi and dedicated codes for branching ratios. Dashed line (4b) and the dot-dashed line (2b2t) are the experimental limits obtained from resonant di-Higgs production. Limits applied both on H₂ and H₃ production.

R. Santos, Higgs Pairs Workshop, 1 June 2022

What is resonant? - the N2HDM

Low impact from non-resonant searches. Most stringent search (2b)(2y) already constraints the (non-resonant Higgs search constraints start to play a role but only for this model).

(2b)(2y) start cutting on the N2HDM-I (with $H_1 = H_{SM}$) parameter space.

Cross section resonantly dominated if $\sigma(gg \rightarrow H_{sM}H_{sM}) < 0.1 \sigma(H_k) \times BR(H_k \rightarrow H_{sM}H_{sM}).$

Region shown by the diagonal dashed line in each plot. Shaded region where we apply the non-resonant search limits.

R2HDM T1: Impact H and HH Constraints

N2HDM T1: Impact H and HH Constraints

Ranges for the trilinear couplings

Highlights from resonant production

Maximum Cross Section Values - Resonant

SM-like Model	H1	H2
R2HDM T1	444 fb	
R2HDM T2	81 fb	
C2HDM T1	387 fb	47 fb
C2HDM T2	130 fb	no point
N2HDM T1	376 fb	344 fb
N2HDM T2	188 fb	63 fb
NMSSM	183 fb	65 fb

2 (approx K-factor)* SIGMA (HH)_SM@LO (from HPAIR) = 39 fb

NLO SM value: 38 fb

N2HDM T1 H_{SM}=H₂

Particle	H ₁	H ₂	H ₃	A	H⁺
Mass [GeV]	75	125.09	311	646	659
Width [GeV]	4.67 10-4	3.61 10 ⁻³	0.137	57.43	62.72
O prod [pb]	29.98	42.39	3.08	0.95	

<u>Resonance production</u>: $\sigma_{prod}(H_3) \times BR(H_3 \rightarrow H_2H_2) = 3.08 \text{ pb} \times 0.123 = 379 \text{ fb}$

Interesting feature: large ZH₁H₂, ZH₂H₂ production:

- $\sigma_{\text{prod}}(A) \times BR(A \rightarrow ZH_3) \times BR(H_3 \rightarrow H_1H_2) = 366 \text{ fb} \text{ tests } \lambda(H_1H_2H_3)$
- $\sigma_{\text{prod}}(A) \times BR(A \rightarrow ZH_3) \times BR(H_3 \rightarrow H_2H_2) = 54 \text{ fb tests } \lambda(H_3H_2H_2)$

requires mass gaps A-ZH₃ and H_3 - H_1H_1 / H_3 - H_1H_2

C2HDM T1 H_{SM}=H₁

Particle	H1	H ₂	H ₃	H⁺
Mass [GeV]	125.09	265	267	236
Width [GeV]	4.106 10 ⁻³	3.265 10 ⁻³	4.880 10 ⁻³	0.37
O _{prod} [pb]	49.75	0.76	0.84	

<u>Resonance production</u>: $\sigma_{prod}(H_2) \times BR(H_2 \rightarrow H_1H_1) = 760 \text{ fb} \times 0.252 = 192 \text{ fb} + \sigma_{prod}(H_3) \times BR(H_3 \rightarrow H_1H_1) = 840 \text{ fb} \times 0.280 = 235 \text{ fb}$

Interesting feature: Test of CP in decays:

- $\sigma_{\text{prod}}(H_3) \times BR(H_3 \rightarrow WW) = 316 \text{ fb and } \sigma_{\text{prod}}(H_3) \times BR(H_3 \rightarrow H_1H_1) = 235 \text{ fb } CP+ \text{ AND}$
- $\sigma_{prod}(H_3) \times BR(H_3 \rightarrow ZH_1) = 76 \text{ fb}$
- $\sigma_{\text{prod}}(H_2) \times BR(H_2 \rightarrow WW) = 255 \text{ fb and } \sigma_{\text{prod}}(H_3) \times BR(H_2 \rightarrow H_1H_1) = 192 \text{ fb } CP+ \text{ AND}$
- $\sigma_{prod}(H_2) \times BR(H_2 \rightarrow ZH_1) = 122 \text{ fb}$

CP-

CP-

CP violation from C violation

 $h_1 \rightarrow ZZ(+)h_2 \rightarrow ZZ(+)h_2 \rightarrow h_1Z$

Combinations of three decays

Many other combinations

$h_1 \rightarrow ZZ \iff CP(h_1) = 1$	$h_3 \rightarrow h_2 h_1 =$	$\Rightarrow CP(h_3) = CP(h_2)$		
Decay	CP eigenstates	Model		
$h_3 \rightarrow h_2 Z$ $CP(h_3) = -CP(h_2)$	None	C2HDM, other CPV extensions		
$h_{2(3)} \rightarrow h_1 Z CP(h_{2(3)}) = -1$	2 CP-odd; None	C2HDM, NMSSM,3HDM		
$h_2 \rightarrow ZZ CP(h_2) = 1$	3 CP-even; None	C2HDM, cxSM, NMSSM,3HDM		

C2HDM - FONTES, ROMÃO, RS, SILVA, PRD92 (2015) 5, 055014

CNMSSM - KING, MÜHLLEITNER, NEVZOROV, WALZ; NPB901 (2015) 526-555

The C and the P in CP violation

$$\begin{split} \overline{\psi}\psi & \text{C even P even -> CP even} \\ \overline{\psi}(a+ib\gamma_5)\psi\phi \\ \overline{\psi}\gamma_5\psi & \text{C even P odd -> CP odd} \\ C \text{ conserving, CP violating interaction} \\ C(Z_{\mu}) = P(Z_{\mu}) = -1 \\ P(h) = 1; P(A) = 1; C(h) = 1 C(A) = -1; \\ C(Z_{\mu}\partial^{\mu}Ah) = 1; P(Z_{\mu}\partial^{\mu}Ah) = 1 \\ P(h_1) = 1; P(h_2) = 1; C(h_1) = 1 C(h_2) = 1 \\ C(Z_{\mu}\partial^{\mu}h_1h_2) = -1; P(Z_{\mu}\partial^{\mu}h_1h_2) = 1 \\ \end{split}$$

A short detour from the main theme

Measurement of CPV angle in tth

$$pp \to (h \to \gamma \gamma) \bar{t}t$$
 $\mathscr{L}_{\bar{t}th}^{CPV} = -\frac{y_f}{\sqrt{2}} \bar{t}(\kappa_t + i\tilde{\kappa}_t \gamma_5) t h$

All measurements are consistent with the SM expectations, and the possibility of a pure CP-odd coupling between the Higgs boson and top quark is severely constrained. A pure CP-odd coupling is excluded at 3.9σ , and $|a| > 43^{\circ}$ is excluded at 95% CL.

Measurement of CPV angle in TTh

$$pp \to h \to \tau^+ \tau^ \mathscr{L}_{\bar{\tau}\tau h}^{CPV} = -\frac{y_f}{\sqrt{2}} \,\bar{\tau}(\kappa_\tau + i\tilde{\kappa}_\tau \gamma_5) \,\tau \,h$$

Mixing angle between CP-even and CP-odd τ Yukawa couplings measured 4 ± 17°, compared to an expected uncertainty of ±23° at the 68% confidence level, while at the 95% confidence level the observed (expected) uncertainties were ±36° (±55)°. Compatible with SM predictions.

Other Higgs Pairs final states

A(H_i)H_{SM} Production (4b)

Model	Mixed Higgs State	m_{Φ} [GeV]	Rate [fb]	K-factor
R2HDM-I	$AH_1 (\equiv H_{\rm SM})$	82	46	2.02
	$H_1 H_2 (\equiv H_{\rm SM})$	68	35	1.97
C2HDM-I	$\frac{1}{H_2H_1(\equiv H_{\rm SM})}$	128	19	2.02
	$H_1H_2(\equiv H_{\rm SM})$	122	14	2.01
	$H_1H_3 (\equiv H_{\rm SM})$	99	11	1.96
N2HDM-I	$H_2H_1(\equiv H_{\rm SM})$	146	105	2.01
	$AH_1 (\equiv H_{\rm SM})$	75	830	2.06
	$H_1H_2(\equiv H_{\rm SM})$	54	2110	2.09
	$AH_2 (\equiv H_{\rm SM})$	101	277	2.04
	$H_1H_3 (\equiv H_{\rm SM})$	73	44	1.97
	$H_2H_3(\equiv H_{\rm SM})$	83	30	1.97
	$AH_3 (\equiv H_{\rm SM})$	69	19	2.01
N2HDM-II	$H_1H_2(\equiv H_{\rm SM})$	103	18	1.86
NMSSM	$A_1 H_1 (\equiv H_{\rm SM})$	113	201	1.92
	$H_2H_1(\equiv H_{\rm SM})$	167	43	1.91
	$A_1 H_2 (\equiv H_{\rm SM})$	87	40	1.94
	$H_1H_2(\equiv H_{\rm SM})$	80	59	1.90

A(H_i)H_{SM} Production (2b2W)

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \frac{Model Mixed Higgs State m_{\Phi} [GeV] Rate [fb] K-factor}{N2HDM-I H_2H_1(\equiv H_{SM}) 179 498 1.98 H_1H_2(\equiv H_{SM}) 117 590 2.04 M_1H_2(\equiv H_{SM}) 205 47 1.92 } $ $ A BP for N2HDM-I in various final states $ $ \frac{m_{H_1} [GeV] m_{H_2} [GeV] m_{H_3} [GeV] m_{A} [GeV] m_{H^{\pm}} [GeV] tan \beta}{113 125.09 304 581 581 1.804 M_1} $ $ \frac{\alpha_1 \alpha_2 \alpha_3 v_s [GeV] m_{H_2} [GeV] M_1 GeV}{0.173 1.276 -0.651 414 999 M_2} $ $ \frac{\sigma_{H_1H_2(\equiv H_{SM})}{1.43 125.3 1.691 \times 10^{-5} 4.103 \times 10^{-3} 0.477 30.41 32.10 M_1} $ $ \frac{(bb)(\tau\bar{\tau}) [fb] (\tau\bar{\tau})(b\bar{b}) [fb] (b\bar{b})(\gamma\gamma) [fb] (\gamma\gamma)(b\bar{b}) [fb] (b\bar{b})(WW) [fb] (WW)(b\bar{b}) [fb] }{67 66 2 23 23 210 590 M_2} $	Maximum ı	rates in	the 2b	2W final sto	ate. All cros	s section	values a	t NLO	
$\frac{\boxed{N2HDM-I}}{H_{1}H_{2}(\equiv H_{SM})} \frac{179}{117} \frac{498}{590} \frac{1.98}{2.04}}{1.92}$ A BP for N2HDM-I in various final states $\frac{\boxed{m_{H_{1}} [\text{GeV}]}{MMSSM} \frac{m_{H_{2}}H_{1}(\equiv H_{SM})}{H_{2}H_{1}(\equiv H_{SM})} \frac{205}{205} \frac{47}{47} \frac{1.92}{1.92}}{1.92}$ $\frac{\boxed{m_{H_{1}} [\text{GeV}]}{113} \frac{m_{H_{2}} [\text{GeV}]}{125.09} \frac{m_{H_{3}} [\text{GeV}]}{304} \frac{m_{H_{4}} [\text{GeV}]}{581} \frac{m_{H_{2}} [\text{GeV}]}{581} \frac{1.804}{1.804}}{\frac{\alpha_{1}}{0.173}} \frac{\alpha_{2}}{1.276} \frac{\alpha_{3}}{-0.651} \frac{v_{s} [\text{GeV}]}{414} \frac{m_{12} [\text{GeV}]}{999}}$ $\frac{\boxed{\sigma_{H_{1}H_{2}(\equiv H_{SM})}}{2.453} \frac{[\text{pb}]}{1.691 \times 10^{-5}} \frac{\Gamma_{H_{2}}^{\text{tot}} [\text{GeV}]}{4.103 \times 10^{-3}} \frac{\Gamma_{H_{3}}^{\text{tot}} [\text{GeV}]}{0.477} \frac{\Gamma_{H^{\pm}}^{\text{tot}} [\text{GeV}]}{30.41} \frac{\Gamma_{H^{\pm}}^{\text{tot}} [\text{GeV}]}{32.10}}{\frac{(bb)(\tau\bar{\tau}) [\text{fb}]}{67} \frac{(\tau\bar{\tau})(bb) [\text{fb}]}{66} \frac{(bb)(\gamma\gamma) [\text{fb}]}{2.23} \frac{(\gamma\gamma)(bb) [\text{fb}]}{2.23} \frac{(bb)(WW) [\text{fb}]}{2.10} \frac{(WW)(bb) [\text{fb}]}{590}}$	$ \frac{\boxed{N2HDM-I} H_2H_1(\equiv H_{SM}) 179 498 1.98}{H_1H_2(\equiv H_{SM}) 117 590 2.04} \\ NMSSM H_2H_1(\equiv H_{SM}) 205 47 1.92 } $ A BP for N2HDM-I in various final states $ \frac{\boxed{m_{H_1} [\text{GeV}] m_{H_2} [\text{GeV}] m_{H_3} [\text{GeV}] m_A [\text{GeV}] m_{H^{\pm}} [\text{GeV}] \tan \beta}{113 125.09 304 581 581 1.804} \\ \underline{\alpha_1 \alpha_2 \alpha_3 v_s [\text{GeV}] m_{H_2}^2 [\text{GeV}^2] \\ 0.173 1.276 -0.651 414 999 } } $ $ \frac{\boxed{\sigma_{H_1H_2(\equiv H_{SM})}}{1.2433 1.691 \times 10^{-5} 4.103 \times 10^{-3} 0.477 30.41 32.10} \\ \underline{(b\bar{b})(\tau\bar{\tau}) [\text{fb}] (\tau\bar{\tau})(b\bar{b}) [\text{fb}] (b\bar{b})(\gamma\gamma) [\text{fb}] (\gamma\gamma)(b\bar{b}) [\text{fb}] (b\bar{b})(WW) [\text{fb}] (WW)(b\bar{b}) [\text{fb}] } \\ \hline 67 66 2 23 210 590 } $		N	Iodel I	Mixed Higgs Sta	ate m_{Φ} [GeV]	Rate [fb]	K-factor		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\frac{H_{1}H_{2}(\equiv H_{SM})}{NMSSM} \frac{117}{H_{2}H_{1}(\equiv H_{SM})} \frac{590}{205} \frac{2.04}{47} \frac{1.92}{1.92}$ A BP for N2HDM-I in various final states $\frac{m_{H_{1}} [\text{GeV}] \ m_{H_{2}} [\text{GeV}] \ m_{H_{3}} [\text{GeV}] \ m_{A} [\text{GeV}] \ m_{H^{\pm}} [\text{GeV}] \ \tan \beta}{113 \ 125.09 \ 304 \ 581 \ 581 \ 1.804}$ $\frac{\alpha_{1}}{\alpha_{1}} \ \alpha_{2} \ \alpha_{3} \ v_{s} [\text{GeV}] \ m_{12}^{2} [\text{GeV}] \frac{1}{\alpha_{12}} \frac{1}{(\text{GeV})} \frac{1}{\alpha_{11}^{2} (\text{GeV})} \frac{1}{\alpha_{12}^{2} $		N2I	HDM-I	$H_2H_1(\equiv H_{\rm SM})$) 179	498	1.98		
$\begin{array}{ c c c c c c c c } \hline \mathrm{NMSSM} & H_2H_1(\equiv H_{\mathrm{SM}}) & 205 & 47 & 1.92 \\ \hline & NMSSM & H_2H_1(\equiv H_{\mathrm{SM}}) & 205 & 47 & 1.92 \\ \hline & A \ BP \ for \ N2HDM-I \ in \ various \ final states \\ \hline & \hline$	$ \begin{array}{ c c c c c c c c } \hline \mathrm{NMSSM} & H_2H_1(\equiv H_{\mathrm{SM}}) & 205 & 47 & 1.92 \\ \hline & \mathrm{ABP} \mbox{ for N2HDM-I in various final states} \\ \hline & \underline{m_{H_1} \ [\mathrm{GeV}] \ m_{H_2} \ [\mathrm{GeV}] \ m_{H_3} \ [\mathrm{GeV}] \ m_{A} \ [\mathrm{GeV}] \ m_{H^\pm} \ [\mathrm{GeV}] \ tan \beta \\ \hline & 113 & 125.09 & 304 & 581 & 581 & 1.804 \\ \hline & \underline{\alpha_1} & \underline{\alpha_2} & \underline{\alpha_3} & v_s \ [\mathrm{GeV}] \ m_{12}^2 \ [\mathrm{GeV}^2] \\ \hline & 0.173 & 1.276 & -0.651 & 414 & 999 \\ \hline & \underline{\alpha_{11} \ \alpha_{2} \ \alpha_{3} \ 1.691 \times 10^{-5} \ 4.103 \times 10^{-3} \ 0.477 \ 30.41 \ 32.10 \\ \hline & \underline{(bb)(\tau\bar{\tau}) \ [fb] \ (\tau\bar{\tau})(bb) \ [fb] \ (bb)(\gamma\gamma) \ [fb] \ (\gamma\gamma)(bb) \ [fb] \ (bb)(WW) \ [fb] \ (WW)(bb) \ [fb] \\ \hline & 67 & 66 \ 2 \ 2 \ 23 \ 210 \ 590 \\ \hline \end{array} } $				$H_1H_2 (\equiv H_{\rm SM})$) 117	590	2.04		
m_{H_1} [GeV] m_{H_2} [GeV] m_{H_3} [GeV] m_A [GeV] $m_{H^{\pm}}$ [GeV] $\tan \beta$ 113 125.09 304 581 581 1.804 α_1 α_2 α_3 v_s [GeV] m_{12}^2 [GeV2] 0.173 1.276 -0.651 414 999 $\sigma_{H_1H_2(\equiv H_{SM})}^{NLO}$ [pb] $\Gamma_{H_1}^{tot}$ [GeV] $\Gamma_{H_2}^{tot}$ [GeV] $\Gamma_{H_3}^{tot}$ [GeV] Γ_A^{tot} [GeV] $\Gamma_{H^{\pm}}^{tot}$ [GeV] $\Gamma_{H^{\pm}}^{tot}$ [GeV] σ_{L53}^{NLO} 1.691 × 10^{-5} 4.103 × 10^{-3} 0.477 30.41 32.10 $(bb)(\tau\bar{\tau})$ [fb] $(\tau\bar{\tau})(bb)$ [fb] $(bb)(\gamma\gamma)$ [fb] $(\gamma\gamma)(bb)$ [fb] $(bb)(WW)$ [fb] $(WW)(bb)$ [fb] 66 2 23 210 590	A BP for N2HDM-I in various final states $ \frac{m_{H_1} [\text{GeV}] m_{H_2} [\text{GeV}] m_{H_3} [\text{GeV}] m_A [\text{GeV}] m_{H^{\pm}} [\text{GeV}] \tan \beta}{113 125.09 304 581 581 1.804} $ $ \frac{\alpha_1 \alpha_2 \alpha_3 v_s [\text{GeV}] m_{12}^2 [\text{GeV}]}{0.173 1.276 -0.651 414 999 $ $ \frac{\sigma_{H_1H_2(\equiv H_{\text{SM}})}}{2.453 1.691 \times 10^{-5} 4.103 \times 10^{-3} 0.477 30.41 32.10 $ $ \frac{(bb)(\tau \bar{\tau}) [\text{fb}] (\tau \bar{\tau})(bb) [\text{fb}] (bb)(\gamma \gamma) [\text{fb}] (\gamma \gamma)(bb) [\text{fb}] (bb)(WW) [\text{fb}] (WW)(bb) [\text{fb}]}{67 66 2 23 210 590 $		NN	ASSM	$H_2H_1(\equiv H_{\rm SM})$) 205	47	1.92		
$ \begin{array}{ c c c c c c } \hline m_{H_1} \ [GeV] & m_{H_2} \ [GeV] & m_{H_3} \ [GeV] & m_A \ [GeV] & m_{H^{\pm}} \ [GeV] & \tan \beta \\ \hline 113 & 125.09 & 304 & 581 & 581 & 1.804 \\ \hline \alpha_1 & \alpha_2 & \alpha_3 & v_s \ [GeV] & m_{12}^2 \ [GeV^2] & \\ \hline 0.173 & 1.276 & -0.651 & 414 & 999 \\ \hline 0.173 & 1.276 & -0.651 & 414 & 999 \\ \hline \sigma_{H_1H_2(\equiv H_{\rm SM})}^{\rm NLO} \ [pb] & \Gamma_{H_1}^{\rm tot} \ [GeV] & \Gamma_{H_2}^{\rm tot} \ [GeV] & \Gamma_{H_3}^{\rm tot} \ [GeV] & \Gamma_A^{\rm tot} \ [GeV] & \Gamma_{H^{\pm}}^{\rm tot} \ [GeV] \\ \hline 2.453 & 1.691 \times 10^{-5} & 4.103 \times 10^{-3} & 0.477 & 30.41 & 32.10 \\ \hline (b\bar{b})(\tau\bar{\tau}) \ [fb] & (\tau\bar{\tau})(b\bar{b}) \ [fb] & (b\bar{b})(\gamma\gamma) \ [fb] & (\gamma\gamma)(b\bar{b}) \ [fb] & (b\bar{b})(WW) \ [fb] & (WW)(b\bar{b}) \ [fb] \\ \hline 67 & 66 & 2 & 23 & 210 & 590 \\ \hline \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A BP for I	N2HDM	-1 in va	nious final s			7]		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			m_{H_1} [Ge 113	$[eV] m_{H_2} [Ge]$	$\frac{V_{\rm J}}{M_{H_3}} \frac{m_{H_3}}{100} [{\rm GeV}]$	m_A [GeV	$\frac{1}{58}$	$\frac{\text{GeV}}{1}$ ta	$\frac{\ln \beta}{804}$
$ \begin{array}{ c c c c c c c c } \hline & \alpha_1 & \alpha_2 & \alpha_3 & b_s [\text{GeV}] & m_{12} [\text{GeV}] \\ \hline & 0.173 & 1.276 & -0.651 & 414 & 999 \\ \hline & 0.173 & 1.276 & -0.651 & 414 & 999 \\ \hline & 0.173 & 1.276 & 0.651 & 414 & 999 \\ \hline & \sigma_{H_1H_2(\equiv H_{\text{SM}})}^{\text{NLO}} [\text{pb}] & \Gamma_{H_1}^{\text{tot}} [\text{GeV}] & \Gamma_{H_2}^{\text{tot}} [\text{GeV}] & \Gamma_{H_3}^{\text{tot}} [\text{GeV}] & \Gamma_A^{\text{tot}} [\text{GeV}] & \Gamma_{H^{\pm}}^{\text{tot}} [\text{GeV}] \\ \hline & 2.453 & 1.691 \times 10^{-5} & 4.103 \times 10^{-3} & 0.477 & 30.41 & 32.10 \\ \hline & (b\bar{b})(\tau\bar{\tau}) [\text{fb}] & (\tau\bar{\tau})(b\bar{b}) [\text{fb}] & (b\bar{b})(\gamma\gamma) [\text{fb}] & (\gamma\gamma)(b\bar{b}) [\text{fb}] & (b\bar{b})(WW) [\text{fb}] & (WW)(b\bar{b}) [\text{fb}] \\ \hline & 67 & 66 & 2 & 23 & 210 & 590 \\ \hline \end{array} $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			110	125.09	304		$\frac{1}{1}$	$\frac{1}{2}$ $\frac{1}{2}$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.173	$\frac{\alpha_2}{1.276}$	-0.651	$\frac{v_s}{414}$	$\frac{1}{99}$	$\frac{16 \text{ v}}{9}$	
$ \begin{array}{ c c c c c c } \hline \sigma_{H_1H_2(\equiv H_{\rm SM})}^{\rm NLO} \ [\rm pb] & \Gamma_{H_1}^{\rm tot} \ [\rm GeV] & \Gamma_{H_2}^{\rm tot} \ [\rm GeV] & \Gamma_{H_3}^{\rm tot} \ [\rm GeV] & \Gamma_A^{\rm tot} \ [\rm GeV] & \Gamma_{H^{\pm}}^{\rm tot} \ [\rm GeV] \\ \hline 2.453 & 1.691 \times 10^{-5} & 4.103 \times 10^{-3} & 0.477 & 30.41 & 32.10 \\ \hline (b\bar{b})(\tau\bar{\tau}) \ [\rm fb] & (\tau\bar{\tau})(b\bar{b}) \ [\rm fb] & (b\bar{b})(\gamma\gamma) \ [\rm fb] & (\gamma\gamma)(b\bar{b}) \ [\rm fb] & (b\bar{b})(WW) \ [\rm fb] & (WW)(b\bar{b}) \ [\rm fb] \\ \hline 67 & 66 & 2 & 23 & 210 & 590 \\ \hline \end{array} $	$ \begin{array}{ c c c c c c } \hline \sigma_{H_1H_2(\equiv H_{\rm SM})}^{\rm NLO} \ [\rm pb] & \Gamma_{H_1}^{\rm tot} \ [\rm GeV] & \Gamma_{H_2}^{\rm tot} \ [\rm GeV] & \Gamma_{H_3}^{\rm tot} \ [\rm GeV] & \Gamma_A^{\rm tot} \ [\rm GeV] & \Gamma_{H^{\pm}}^{\rm tot} \ [\rm GeV] \\ \hline 2.453 & 1.691 \times 10^{-5} & 4.103 \times 10^{-3} & 0.477 & 30.41 & 32.10 \\ \hline (b\bar{b})(\tau\bar{\tau}) \ [\rm fb] & (\tau\bar{\tau})(b\bar{b}) \ [\rm fb] & (b\bar{b})(\gamma\gamma) \ [\rm fb] & (\gamma\gamma)(b\bar{b}) \ [\rm fb] & (b\bar{b})(WW) \ [\rm fb] & (WW)(b\bar{b}) \ [\rm fb] \\ \hline 67 & 66 & 2 & 23 & 210 & 590 \\ \hline \end{array} $			0.110		0.001				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	[$\sigma_{H_1H_2(\equiv I)}^{\text{NLO}}$	$H_{\rm SM}$ [pb]	$\Gamma_{H_1}^{\text{tot}} [\text{GeV}]$	$\Gamma_{H_2}^{\text{tot}} [\text{GeV}]$	$\Gamma_{H_3}^{\text{tot}} [\text{GeV}]$	Γ] Γ_A^{tot}	[GeV]	$\Gamma_{H^{\pm}}^{\text{tot}} \text{ [GeV]}$
$\begin{array}{ c c c c c c c c }\hline (b\bar{b})(\tau\bar{\tau}) \ [\mathrm{fb}] & (\tau\bar{\tau})(b\bar{b}) \ [\mathrm{fb}] & (b\bar{b})(\gamma\gamma) \ [\mathrm{fb}] & (\gamma\gamma)(b\bar{b}) \ [\mathrm{fb}] & (b\bar{b})(WW) \ [\mathrm{fb}] & (WW)(b\bar{b}) \ [\mathrm{fb}] \\\hline 67 & 66 & 2 & 23 & 210 & 590 \\\hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	2.4	153	1.691×10^{-5}	4.103×10^{-3}	0.477	3	0.41	32.10
67 66 2 23 210 590	67 66 2 23 210 590	[$(b\overline{b})(au)$	$\bar{\tau}$) [fb]	$(\tau \bar{\tau})(b\bar{b})$ [fb]	$(b\bar{b})(\gamma\gamma)$ [fb]	$(\gamma\gamma)(b\overline{b})$ [f	$[b] \mid (b\overline{b})(V$	VW) [fb]	$(WW)(b\bar{b})$ [fb]
			6	7	66	2	23		210	590

A(H_i)H_{SM} Production (2b2t)

Multi Higgs Final States (one SM Higgs)

Cascade decays with a SM-like Higgs in the final states

Model	Mixed Higgs State	$m_{\Phi_1} \; [\text{GeV}]$	$m_{\Phi_2} \; [\text{GeV}]$	Rate [fb]	K-factor
N2HDM-I	$H_2H_3(\equiv H_{\rm SM}) \rightarrow H_1H_1(bb) \rightarrow (bb)(bb)(bb)$	98	41	15	1.95
	$H_2H_1(\equiv H_{\rm SM}) \to H_1H_1(b\bar{b}) \to (b\bar{b})(b\bar{b})$	282	-	40	1.96
	$H_2H_1(\equiv H_{\rm SM}) \to AA(b\bar{b}) \to (b\bar{b})(b\bar{b})(b\bar{b})$	157	73	33	2.05
	$H_1H_2(\equiv H_{\rm SM}) \to (b\bar{b})H_1H_1 \to (b\bar{b})(b\bar{b})(b\bar{b})$	54	-	111	2.09
	$H_3H_2(\equiv H_{\rm SM}) \to H_1H_1(b\bar{b}) \to (b\bar{b})(b\bar{b})(b\bar{b})$	212	83	8	1.93
N2HDM-II	$H_2H_1(\equiv H_{\rm SM}) \to H_1H_1(b\bar{b}) \to (b\bar{b})(b\bar{b})(b\bar{b})$	271	-	3	1.87
NMSSM	$H_2H_1(\equiv H_{\rm SM}) \to H_1H_1(bb) \to (bb)(bb)(bb)$	319	-	11	1.90
	$H_2H_1(\equiv H_{\rm SM}) \to A_1A_1(b\bar{b}) \to (b\bar{b})(b\bar{b})(b\bar{b})$	253	116	26	1.92

The largest cross section we have obtained with 4 SM-like Higgs bosons is for the N2HDM-I

$$\sigma(pp \rightarrow H_2H_2 \rightarrow H_1H_1H_1H_1 \rightarrow 4(b\bar{b}) = 1.4 \text{ fb}$$

No SM-like Higgs in the final states

Model	SM-like Higgs	Signature	$m_{\Phi} \; [\text{GeV}]$	Rate [fb]	K-factor
N2HDM-I	H_3	$H_1H_1 \to (b\bar{b})(b\bar{b})$	41	14538	2.18
	H_3	$H_1H_1 \to (4b); (4\gamma)$	41	4545;700	2.24
	H_1	$AA \to (b\bar{b})(b\bar{b})$	75	6117	2.11
	H_1	$H_2H_2 \to (b\bar{b})(b\bar{b})$	146	73	2.01
	H_2	$AA \to (b\bar{b})(b\bar{b})$	80	2875	2.13
	H_2	$AH_1 \to (b\bar{b})(b\bar{b})$	$m_A:87$	921	2.09
			$m_{H_1}: 91$		
	H_2	$H_1H_1 \to (b\bar{b})(b\bar{b})$	47	8968	2.17
N2HDM-II	H_2	$H_1H_1 \to (b\bar{b})(b\bar{b})$	44	1146	2.18
C2HDM-I	H_1	$H_2H_2 \to (b\bar{b})(b\bar{b})$	128	475	2.07
	H_2	$H_1H_1 \to (b\bar{b})(b\bar{b})$	66	814	2.16
	H_3	$H_1H_1 \to (b\bar{b})(b\bar{b})$	84	31	2.09
NMSSM	H_1	$A_1A_1 \to (b\bar{b})(b\bar{b})$	166	359	1.95
	H_1	$A_1 A_1 \to (\gamma \gamma)(\gamma \gamma)$	179	34	1.96
	H_2	$H_1H_1 \to (b\bar{b})(b\bar{b})$	48	3359	2.18
	H_2	$A_1 A_1 \to (b\bar{b})(b\bar{b})$	54	1100	2.18
	H_1	$A_1 A_1 \to (t\bar{t})(t\bar{t})$	350	20	1.82

Other benchmark points in the paper. More benchmarks and details of each BP can be provided upon request.

Views from previous works

Real Singlet Extension versus experimental di-Higgs searches

Dawson, Lewis, Robens, Stefaniak, Sullivan, Review in Physics (2020) 100045

hh searches: relevant constraint for $m_{h2} \lesssim 450 \text{ GeV}$

2 Real Scalar Extension

Robens, Stefaniak, Wittbrodt, Eur. Phys. J. C80 (2020) no.2, 151 also Barducci, Mimasu, No, Vernieri, Zurita, JHEP 2002 (2020) 00

R. Santos, Higgs Pairs Workshop, 1 June 2022

Complex Scalar Extension

Adhikari, Lane, Lewis, Sullivan, 2022 Snowmass

$$V(\Phi, S_c) = \frac{\mu^2}{2} \Phi^{\dagger} \Phi + \frac{\lambda}{4} (\Phi^{\dagger} \Phi)^4 + \frac{b_2}{2} |S_c|^2 + \frac{d_2}{4} |S_c|^4 + \frac{\delta_2}{2} \Phi^{\dagger} \Phi |S_c|^2 + \left(a_1 S_c + \frac{b_1}{4} S_c^2 + \frac{e_1}{6} S_c^3 + \frac{e_2}{6} S_c |S_c|^2 + \frac{\delta_1}{4} \Phi^{\dagger} \Phi S_c + \frac{\delta_3}{4} \Phi^{\dagger} \Phi S_c^2 + \frac{d_1}{8} S_c^4 + \frac{d_3}{8} S_c^2 |S_c|^2 + \text{h.c.} \right)$$

Paper to appear soon - maximum BRs for resonant double SM Higgs production, resonant production of a SM-like Higgs + new scalar, and double resonant new scalar production. Bus between 0.7 and 1. Direct production, the main production of a new scalar resonance may be from the s-channel production and decay of another scalar resonance.

+ Ian talk today 14.45

Type II 2HDM: H->hh

Kling, No, Su, JHEP09 (2016) 093

R. Santos, Higgs Pairs Workshop, 1 June 2022

2HDM Higgs Pairs at ee Collider + Francisco talk tomorrow 17.15

Large triple Higgs couplings in the 2HDM: implications at colliders

F. Arco, S. Heinemeyer and M. Herrero, based on arXiv:2005.10576

R. Santos, Higgs Pairs Workshop, 1 June 2022

CP-Violating 2HDM (C2HDM)

Gröber, Mühlleitner, Spira, Nucl.Phys.B.925 (217) 1

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{5}}{2} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.] \cdot \text{ complex}$$

$$\left(\begin{array}{c}H_1\\H_2\\H_3\end{array}\right) = R\left(\begin{array}{c}\rho_1\\\rho_2\\\rho_3\end{array}\right)$$

3 neutral CP-mixing Higgs bosons

NMSSM Benchmarks for Maximum Resonant H_{SM}+Singlet Production

Ellwanger, Basler, Mühlleitner, Rompotis for the LHCHXSWG NMSSM Subgroup

Scan w/ NMSSMCALC and NMSSMTools: exp. constraints Higgs, SUSY, B mesons, Dark Matter

NMSSM and CxSM Comparison in Resonant H_{SM}+Singlet Production

Costa, Mühlleitner, Sampaio, RS, JHEP 06 (2016) 034

Scan in CxSM and NMSSM parameter space w/ experimental and theoretical constraints

Maximum NMSSM rates can be enhanced by up to two orders of magnitude compared to CxSM -> model distinction

And now for some completely different

Comparison with EFT

Effective Lagrangian with three terms: c_3 , the trilinear coupling modification; c_{t} , the top-Yukawa coupling modification; c_{tt} , the effective two-Higgs-two-fermion coupling coefficient,

$$\Delta \mathcal{L}_{\text{non-lin}} \supset -m_t t \bar{t} \left(c_t \frac{h}{v} + c_{tt} \frac{h^2}{2v^2} \right) - c_3 \frac{1}{6} \left(\frac{3M_h^2}{v} \right) h^3$$

The matching relations of our specific models to the EFT Lagrangian is

Higgs-top Yukawa coupling :
$$g_t^{H_{\rm SM}}(\alpha_i,\beta) \rightarrow c_t$$

trilinear Higgs coupling : $\frac{g_3^{H_{\rm SM}H_{\rm SM}}(p_i)}{3M_{H_{\rm SM}}^2/v} \rightarrow c_3$

two-Higgs-two-top quark coupling :
$$\sum_{k=1}^{k_{\text{max}}} \left(\frac{-v}{m_{H_{L}}^{2}}\right) g_{3}^{H_{k}H_{\text{SM}}H_{\text{SM}}}(p_{i}) g_{t}^{H_{k}}(\alpha_{i},\beta) \rightarrow c_{tt}$$

Consider the R2HDM-II with the following set of parameters

$m_{H_1} \; [\text{GeV}]$	$m_{H_2} \; [\text{GeV}]$	$m_A \; [\text{GeV}]$	$m_{H^{\pm}}$ [GeV]	α	an eta	$m_{12}^2 \; [{\rm GeV^2}]$	
125.09	1131	1082	1067	-0.924	0.820	552749	

SMEFTBP1:
$$c_3 = 0.782$$
, $c_t = 0.951$, $c_{tt} = -0.122$.

And the extra choices that impact on c_{tt}

$m_{H_2} \; [\text{GeV}]$	Γ_{H_2} [GeV]	c_{tt}	$g_3^{H_2H_1H_1}$ [GeV]	$\sigma_{ m R2HDM}^{ m w/\ res}$ [fb]	$\sigma_{\mathrm{SMEFT}}^{c_{tt} \neq 0}$ [fb]	ratio
1131	78.80	-0.1222	-504.52	30.5	26.1	86%
1200	89.74	-0.1031	-479.29	27.7	24.8	90%
1500	470.2	-4.85310^{-2}	-352.42	21.8	21.4	98%

For masses of the order of 1 TeV the ratio is 86% although for 1.5 TeV we get 98%. Note that if we turn-off the H_2 resonance by setting c_{tt} = 0, we get

$$\sigma_{\text{R2HDM}}^{\text{w/o res}} = 18.6 \text{ fb} \text{ and } \sigma_{\text{SMEFT}}^{c_{tt}=0} = 18.6 \text{ fb}$$

Comparison with EFT

Consider now the N2HDM-I with the following set of parameters

$m_{H_1} \; [\text{GeV}]$	$m_{H_2} \; [\text{GeV}]$	$m_{H_3} \; [\text{GeV}]$	$m_A \; [\text{GeV}]$	$m_{H^{\pm}} \; [\text{GeV}]$	an eta
125.09	269	582	390	380	4.190
α_1	α_2	α_3	$v_s \; [\text{GeV}]$	$\operatorname{Re}(m_{12}^2)$ [GeV ²]	
1.432	-0.109	0.535	1250	28112	

 $g_t^{H_2} = 0.179$ and $g_t^{H_3} = 2.337 \times 10^{-2}$

SMEFTBP2: $c_3 = 0.877$, $c_t = 1.012$, $c_{tt} = 4.127 \times 10^{-2}$

Now we vary the H_2 mass but keep H_3 fixed (c_{tt} has now two terms)

m_{H_2}	Γ_{H_2}	$c_{tt}^{H_2}$	c_{tt}	$g_3^{H_2H_1H_1}$	$\sigma_{ m N2HDM}^{ m w/\ res}$ [fb]	$\sigma_{\text{SMEFT}}^{c_{tt} \neq 0}$ [fb]	ratio
269	0.075	4.410×10^{-2}	4.127×10^{-2}	-72.42	183.70	20.56	11%
300	0.083	3.170×10^{-2}	2.877×10^{-2}	-64.80	162.80	21.28	13%
400	0.177	9.544×10^{-3}	6.721×10^{-3}	-34.68	43.33	22.60	52%
420	0.229	6.895×10^{-3}	4.063×10^{-3}	-27.62	31.70	22.76	72%
440	0.284	4.600×10^{-3}	1.767×10^{-3}	-20.22	26.26	22.90	87%
450	0.315	3.564×10^{-3}	7.323×10^{-4}	-16.39	24.84	22.96	92%
500	2.567	-7.132×10^{-4}	-3.545×10^{-3}	4.05	23.56	23.22	99%

 $\sigma_{\text{N2HDM}}^{\text{w/o res}} = 23.05 \text{ fb}$ and $\sigma_{\text{SMEFT}}^{ctt=0} = 23.01 \text{ fb}$

In this case we start a ratio of 11%, but when we set both masses to about 500 GeV we get a ratio of 99%.

Single Higgs vs. Di-Higgs

The last slide

N2HDM-I and NMSSM - 3 SM-like Higgs bosons (H1). NLO rates above 10 fb. Di-Higgs states larger/ comparable with direct production. <u>Reason:</u> non-SM-like Higgs is singlet-like (suppressed couplings to SM-like particles) and/or is more down- than up-type like (suppressed direct production).							
m_{H_1} [GeV]	m_{H_2} [GeV]	$m_{H_3} \; [\text{GeV}]$	$m_A \; [\text{GeV}]$	$m_{H^{\pm}} [\text{GeV}]$	$\tan\beta$		
125.09	281.54	441.25	386.98	421.81	1.990		
α_1	α_2	α_3	$v_s [\text{GeV}]$	$\frac{\operatorname{Re}(m_{12}^2) \left[\operatorname{GeV}^2\right]}{22720}$			
1.153	0.159	0.989	9639	29769			
$\sigma_{H_1H_2}^{\text{NLO}} \times \text{BR}(H_2 \to H_1H_1) \times \text{BR}(H_1 \to b\bar{b})^3 = 509 \cdot 0.37 \cdot 0.60^3 \text{ fb} = 40 \text{ fb}$ $\sigma_{H_1H_2}^{\text{NNLO}}(H_2) \times \text{BR}(H_2 \to H_1H_1) \times \text{BR}(H_1 \to b\bar{b})^2 = 161 \cdot 0.37 \cdot 0.60^2 \text{ fb} = 21 \text{ fb}$ $\text{NNLO}(H_2) \times \text{DR}(H_2 \to H_1H_1) \times \text{DR}(H_1 \to b\bar{b})^2 = 161 \cdot 0.37 \cdot 0.60^2 \text{ fb} = 21 \text{ fb}$							
0	$\sigma (H_2) \times BR(H_2 \to WW) = 101 \cdot 0.44 \text{ ID} = 71 \text{ ID}$						
H2 BR to bb tiny. Non-SM- like H2 has better chances of being discovered in di-Higgs than in single Higgs channels (W bosons still have to decay).							

Conclusions

- Numerous BSM Higgs sector extensions with large variety of (resonant) Higgs pair final states
- Large scan in various BSM models taking into account theoretical and experimental constraints
- Non-resonant SM Higgs pair cxns in BSM models can be significantly larger than in SM
- Single Higgs production impacts Yukawa coupling and thereby trilinear Higgs coupling
- Large enhancement through resonant production -> also ZHiHj and triple or quartic Higgs production possible; test of CP violation through Higgs decays possible
- Will continue to provide benchmark points INPUT WELCOME!

Search for benchmark points - in different combinations of final state Higgs pairs (H_{SM}H_{SM}, H_{SM}H_k, H_kH_j, ...) - in different decay signatures that allow to - test or exclude models - identify smoking gun signatures/exotic signatures - complement conventional searches for non-SM Higgs bosons - complement single Higgs results (coupling measurements ...) - if possible (to be seen)

Thank you!

Real Singlet Extension

Lewis, Sullivan, PRD96 (2017) 035037; Review in Physics (2020) 100045

+ Simplest SM extension: additional real singlet field; no \mathbb{Z}_2 symmetry

$$V(\Phi, S) = -\frac{\mu^2}{2} \Phi^{\dagger} \Phi + \frac{\lambda}{4} (\Phi^{\dagger} \Phi)^2 + \frac{a_1}{2} \Phi^{\dagger} \Phi S + \frac{a_2}{2} \Phi^{\dagger} \Phi S^2 + b_1 S + \frac{b_2}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4$$

+ Higgs and singlet mix:

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} h \\ S \end{pmatrix}$$

+ Simple production rate:

 $\sigma(pp \to h_2) = \sin^2 \theta \sigma_{SM}(pp \to h_2),$

* Maximizing resonant di-Higgs production:

h2→h1h1

perturbative unitarity, correct VEV, sinθ=0.1 consistent w/ current Higgs constraints

R. Santos, Higgs Pairs Workshop, 1 June 2022

C2HDM: Single versus Double Higgs Production

[Basler, Dawson, Englert, Mühlleitner, Phys. Rev. D101 (2020) 1]

• Di-Higgs Peaks and Top Valleys (C2HDM)

[Basler, Dawson, Englert, MM, 1909.09987]

 $gg \to H_i \to t\bar{t}$ and $gg \to H_i \to hh$ (h SM-like Higgs boson, $H_i \neq h$)

* Destructive signal-background interference may be correlated with constructive signal-signal interference

For interference effects, see also [Dawson,Lewis '15; Djouadi eal '19; Lewis/Carena eal/Bagnaschi eal in 1910.00012]

2HDM+Complex Singlet - h125,H,A,h,a

Baum, Shah, JHEP12 (2018) 044

R. Santos, Higgs Pairs Workshop, 1 June 2022