

HH Production: CMS overview

Higgs pairs workshop

30 May 2021

Fabio Monti

on behalf of the CMS Collaboration

Outline

Introduction and motivations

Status of CMS HH searches

Non-resonant HH search

- HH production is sensitive to the Higgs trilinear coupling λ
- VBF HH is sensitive to c_{2V} coupling \rightarrow k_{2V} = c_{2V} / $c_{2V(SM)}$

ggF production (ggHH) diagrams at LO

Fundamental tests of SM

HH production cross section vs $k_{\lambda} = \lambda/\lambda_{SM}$

Sensitivity to effective field theory (EFT) couplings

 ggHH production described by 5 diagrams:

Modification of total and differential XS

> 1D or 2D constraints on couplings, e.g. c_2 or $(k_{\lambda}, k_{t}), \dots$

Shape benchmarks of JHEP04(2016)126

12 kinematically representative points in the 5D parameters space

Benchmark	κ_{λ}	κ_t	c_2	c_g	c_{2g}
0	7.5	1.0	-1.0	0.0	0.0
1	1.0	1.0	0.5	-0.8	0.6
2	1.0	1.0	-1.5	0.0	-0.8
3	-3.5	1.5	-3.0	0.0	0.0
4	1.0	1.0	0.0	0.8	-1.0
5	2.4	1.0	0.0	0.2	-0.2
6	5.0	1.0	0.0	0.2	-0.2
7	15.0	1.0	0.0	-1.0	1.0
8	1.0	1.0	1.0	-0.6	0.6
9	10.0	1.5	-1.0	0.0	0.0
10	2.4	1.0	0.0	1.0	-1.0
11	15.0	1.0	1.0	0.0	0.0

$\rm m_{HH}$ distribution for the 12 benchmarks

- Extract limit on the 12 benchmarks to explore EFT sensitivity
- ➤ Alternative shape benchmarks defined in JHEP03(2020)091

Resonant HH searches and possible interpretations

- Spin 0 resonances
 - Randall-Sundrum radion
 - 2 H doublets models (2HDM)
- Spin 2 resonances
 - Randall-Sundrum KK graviton
- + VBF production mechanism

- Spin 0 resonances
 - Next-to-minimal supersimmetry models (NMSSM) <u>JHEP07(2008)</u>
 - Two-real-scalar-singlet extension of the SM (TRSM) <u>E.P.J.C80,151(2020)</u>
- Assuming resonances with narrow decay widths

Explored final states

- H→bb: large BR & bkg rejection from heavy-flavour jet ID
- H final states with leptons, γ, or τ_h: efficient bkg rejection

- No HH golden channel
 - Channel sensitivities are complementary
- Many final states covered
 - resolved and/or boosted
- Stay tuned for new results!

Available **resonant** and **non-resonant**HH (or YH) searches with Run 2 data
from CMS

Non-resonant HH searches

Non-resonant HH comb with 2016 data (~36 fb⁻¹)

No deviations from SM observed

Obs.(exp.) upper limit on $\sigma(HH)$

22.2(12.8)×SM from CMS 6.9(10)×SM from ATLAS

Obs. k, exclusion

-11 < k_{λ} < **17** @ 95% C.L. from CMS -5 < k_{λ} < 12 @ 95% C.L. from ATLAS

Results with full Run 2 dataset (~138 fb⁻¹) in this presentation

HH searches evolution since 2016

 HH searches results with full Run 2 dataset outperform previous results scaled by integrated lumi

- Extensive usage of machine learning
- Boosted topologies
- Selections targeting VBF HH production mechanism
- Additional final states
- ➤ We are quickly approaching to 1 (Run 3?)
 - 2.6σ significance expected at HL-LHC →improvements possible as proven by Snowmass studies (N. Lu and P. Meade talks)

Constraints on the VBF HH production

Upper limits on VBF HH XS assuming $k_{2V} = 1$ (SM)

Upper limits on VBF HH XS assuming $k_{2V} = 0$

- \triangleright Exclusion of $k_{2V} = 0$ at 95% C.L.
- Complementarity of the final states depending on the specific SM/BSM interpretation

Constraints on k_{λ} and k_{2V}

Best fit and constraints at 95% CL on k_{λ}

Best fit and constraints at 95% CL on k_{2V}

Good compatibility to SM predictions in all channels

Non-resonant HH→bbyy with full Run 2 - overview

- Clean but rare final state
 - γ pair + b-jets pair resonant on m_H
 - bkg from jets(+γγ) → γ and b-jet ID ₹
 requirements
- MVA strategy to optimize signal-bkg separation
 - BDT to separate ggF or VBF HH from γ(γ)+jets events
 - DNN to separate HH from ttH(γγ) events

300 400 500 600 700 800 900 1000

 $m^*_{bbvv} = M_{vvii} - M_{vv} - M_{ii} + 250 \text{ GeV}$

- Optimize sensitivity to SM, anomalous k_{λ} , and k_{2V}
 - 3 BDT × 4 m*_{bbvy} categories targeting ggHH
 - 2 m*_{bbvv} categories targeting VBF HH
- Signal extraction from simultaneous fit of m_{yy} and m_{bb}

Non-resonant HH→bbyy with full Run 2 - results

- No deviations from SM observed
- **Obs.**(exp.) upper limit on HH signal strength **7.7**(5.2)

Limit on VBF HH XS X BR vs k_{2V}

Non-resonant HH→bbyy with full Run 2 - EFT results

Limit on ggHH XS×BR for benchmarks of JHEP04(2016)126

- Obs. limits ranging from 0.3 to 1 fb
- Kinematics variations between
 benchmarks → different upp. limit

—Limit on ggHH XSimesBR vs c $_2$

- Special role of H and t in several BSM theories
- HHtt effective coupling

Obs.
$$c_2 \in [-0.6, 1.1]$$

Exp. $c_2 \in [-0.4, 0.9]$

Non-resonant (& resonant) HH multilepton - overview

- Target WWWW, WWττ, and ττττ final states with μ, e, or τ_h
 - o First search in these channels!
- Selections on p_T^{miss} and on m(ℓ+ℓ-) to reduce DY and ZZ bkg
- bkg dominated by di-boson production and events with mis-identified ℓ or τ_h (fake bkg)
 BDT score in the 3ℓ+1
 - Modeling of fake bkg from data, and of all other bkg's from simulation
- 7 categories distinguished by ℓ^+ , ℓ^- , and τ_h multiplicity
- BDT classifiers to separate sig from bkg
 - Optimized separately for SM, EFT, res. spin-0, and res. spin-2 sig's

HH multilepton - non-resonant search results

- All observations consistent with SM predictions
- Obs.(exp.) upper limit on HH XS 21.8(19.6)×SM
- **Obs.**(exp.) constraint to k_{λ} -7.0 < k_{λ} < 11.2(-7.0 < k_{λ} < 11.7)

Upper limits on $\sigma(HH)$ vs (c_2, k_t)

Extensive test of Higgs-top interaction

Upper limits on $\sigma(HH)$ for shape benchmarks of <u>JHEP03(2020)091</u>

First constraint on these benchmarks

Non-resonant HH→bbZZ(4ℓ)

- Final state with 4ℓ + 2 b-jets
 - Clean signature over continuum bkg
 - Small BR of ~10⁻⁴
- BDT classifier to optimize signal separation from bkgs
 - kin. info of l's and jets + b-tag score

sig extraction from BDT distribution fit

obs.(exp.) upp. lim. on SM HH XS 30(37)×SM

obs.(exp.) k_{λ} excl. @95%C.L.

$$-9(-11) < k_{\lambda} < 14(16)$$

First non-res results for this channel

After preselections bkg dominated by single-H

Non-resonant resolved HH→4b - overview

- Final state with four b-jets (+ extra jet pair for VBF HH)
- H(bb) reconstruction correct in >82(91)% of ggF(VBF)
- bkg dominated by QCD and tt
 - DNN-based b-jet ID & lepton veto
 - bkg estimation from data
- VBF HH signal region
 - BDT classifier to reject ggHH+jets
 - Two BDT score cat's optimized for anomalous k_{2V} and SM
 - Fit to m_{HH}
- ggHH signal region
 - Two 4-body mass cat's
 - BDT classifier to reduce bkg
 - Fit to BDT shape

Non-resonant resolved HH→4b - results

Obs.(exp.) upper limit on HH XS of 3.9(7.8)×SM

Obs < exp limits because of small data under-fluctuation</p>

Boosted HH topologies

Boosted ggHH→4b event candidate

CMS-PHO-EVENTS-2020-012

Boosted H→bb candidate(s) reconstructed as large radius jet(s)

Possible also for H→T_bT_b

H→bb candidates reconstructed as AK8 jets (anti-kT with R=0.8)

gen-level m_{HH} for VBF HH events

- Enhanced for anomalous k₂₁
 - Optimal approach to search for X→HH or YH resonances with m_x≥ 1 TeV

Higher m_{HH} ∼ lower QCD bkg

- H→bb ID using jet substructure info
 - Excellent performance through usage of "ParticleNet" graph NN 21

Non-resonant boosted HH→4b - overview

- Final state with two AK8 jets (+extra jet pair in VBF HH)
- Main bkgs from QCD and tt
 - → H→bb ID using jet substructure
 - Regression to improve H→bb mass
 resolution ParticleNet-based
 - bkg estimation from data
- > 3 VBF HH enriched categories
 - Classification on ParticleNet score
 - sig extraction from fit to m_{HH}
- > 3 ggHH-enriches categories
 - BDT classifier to separate sig from bkgs & to define categories /

Regressed mass of one AK8 jet in a ggHH(4b) category

Non-resonant boosted HH→4b - constraints on k_{2V}

No deviations from SM observed

Most stringent constraint on k_{2V} to date

2D likelihood scan of (k_{λ}, k_{2V})

- $k_{2V} = 0$ excluded at >5σ assuming $k_{\lambda} = k_{t} = k_{V} = 1$
- $k_{2V} = 0$ excluded at >3σ for any value of k_{λ}

Non-resonant boosted HH→4b - constraints on k_x&SM

 Good constraints on HH signal strength and k_λ thanks to ggHH boosted categories

Limit on HH XS split by categories

obs(exp) $UL = 9.9(5.1) \times SM$

Obs.
$$k_{\lambda} \in [-9.9, 16.9]$$

Exp. $k_{\lambda} \in [-5.1, 12.2]_{24}$

Non-resonant HH→bbtt with full Run 2 - overview

- $\tau_h \tau_h$, $\tau_h e$, and $\tau_h \mu$ final states \rightarrow ~88% of H \rightarrow TT BR
- Online selections for single-lept., lept.+τ_h, τ_hτ_h and VBF τ_hτ_h
- bkg from tt, QCD, and DY events
 - \circ Kinematic selections on $(m_{bb}, m_{\tau\tau})$
 - Lepton ID+iso & b-jet ID
- Event categorization on production mode and final state
- 1 category for VBF HH
 1 cat' for ggHH with boosted H→bb
 2 cat's for ggHH with resolved
 H→bb

DNN score in one resolved ggHH(bbτ_hτ_h) category

- DNN classifiers to maximize sig vs bkg separation
- Signal extraction from fit to DNN score

Non-resonant HH→bbtt with full Run 2 - results

No deviations from SM observed

~2× better than HH→bbττ search with 2016 dataset

Upper limit on HH XS × BR vs k,

Upper limit on inclusive HH XS

Most stringent to date!

+ **obs**(exp) UL on VBH HH XS of **124**(154) × SM

+ obs(exp) k_{2V} constraints: -0.4 < k_{2V} < 2.6 (-0.6 < k_{2V} < 2.8) 26

Resonant HH searches

Resonant HH comb with 2016 data (~36 fb⁻¹)

No significant excess found

Upper limit on $\sigma(pp \rightarrow X \rightarrow HH)$

Results with full Run 2 dataset (~138 fb⁻¹) in this presentation

Events / bin

Data-Bkg)/σ

Resonant X→HH→4b - overview

- $m_x \in [1, 3]$ TeV and spin 0 or 2
- Final states with 1 or 2 boosted H
 - 2 AK8 jets, or 1 AK8 + 2 AK4 jets
- main bkg from QCD and tt
 - b-jet ID based on DNN discriminators
 - modeling from data assisted by MC

lead AK8 jet mass in high b-tag scores cat'

m*_{HH} in high b-tag scores category 138 fb⁻¹ (13 TeV) **CMS** 200 Total bkg unc. Preliminary 150 - 105 < m, < 150 GeV 100

1000 1500 2000 2500 $m_{HH}^* = m_{HH} - m_{H_1} - m_{H_2} + 250 \text{ GeV}$

- One category for semi-boosted + two cat's for fully-boosted based on the b-tag scores
- Signal extraction from fit to m* HH and leading AK8 jet mass

3000

Resonant X→HH→4b - results

No significant excess found in the 1-3 TeV m_X range
 Upper limit on σ(pp→X→HH→4b)

For $\Lambda_R = 3$ TeV & k/M_{PI} = 0.5, radion with m \in [1, 2.6] TeV and graviton with m \in [1, 1.2] TeV excluded @95% CL

Resonant boosted X→HH→bb+leptons - overview

- Resonance with m_x ∈ [0.8, 4.5] TeV and spin = 0 or 2
- Target HH decays bb $WW(qq\ell v) + bb TT(2\ell 4v) + bb VV(2\ell 2v)$ single-lepton (SL) final state = large radius jet + nearby lepton + p_T^{miss} di-lepton (DL) final state = 2 leptons + p_T^{miss}
 - + H→bb reconstructed as a large radius heavy-flavored jet
- Main bkg from tt and Z+jets modeled with simulation

- Event categorization on lept. flavour,
 b-tag score, and other variables
 providing good sig-bkg separation
 - 8 SL categories + 4 DL categories
- 2D fit to (m_{HH}, m_{bb})

Resonant boosted X→HH→bb+leptons - results

No significant excess found

Upper limit on $\sigma(pp \rightarrow X \rightarrow HH)$

spin 0 resonance

Upper limits from 24.5 to 0.78 fb

spin 2 resonance

Upper limits from 16.7 to 0.67 fb

➤ Sensitivity similar to search for X→HH→4b

Resonant boosted X→YH→4b - overview

- $m_X \in [0.9, 4]$ TeV and $m_Y \in [60, 600]$ GeV \rightarrow boosted H & Y
- Similar final state and bkgs of boosted non-resonant HH(4b)
 - Similar ParticleNet-based strategy for H(bb) ID, m_{bb} regression and event categorization
- Modeling of QCD bkg from data and of tt from simulation
 - Data control regions for validation & to improve data/MC agreement
- 2D fit to reconstructed m_x and m_y of signal candidates

Resonant boosted X→YH→4b - results

No significant excess found

Observed limits on $\sigma(pp \rightarrow X \rightarrow YH \rightarrow 4b)$ at 95% CL as a function of (M_x, M_y)

Limits range from 0.1 fb to 150 fb

Assuming maximally allowed NMSSM and TRSM XS's

- \rightarrow NMSSM excluded within $M_x \in [1, 1.15]$ TeV and $M_y \in [101, 145]$ GeV
- > TRSM excluded within $M_{\chi} \in [0.95, 1.33]$ TeV and $M_{\gamma} \in [110, 132]$ Ge $\frac{1}{3}$

Resonant $H \rightarrow h_S h \rightarrow bb\tau\tau$ (= $X \rightarrow YH \rightarrow bb\tau\tau$) - overview

Online+offline selections targeting $\tau_h \tau_h$, $e \tau_h$, $\mu \tau_h$

Require ID of exactly 1 or 2 b-jets

Main backgrounds from QCD, tt, and Z+jets

Optimize signal vs bkgs separation with NN multiclassifier

Signal region dominated
 by events with genuine τ_h

H→h_sh→bbтт at CMS with full Run 2 - results

- No deviations from SM observed
 - \circ Upper limits from 125 fb (m_H = 240 GeV) to 2.7 fb (m_H = 3 TeV)

model-independent limit on $H\rightarrow hh_s$ XS vs h_s mass for different m_H hypotheses

NMSSM interpretation

- Exclude m_H up to ~620 GeV
- \triangleright Exclude m_{hs} up to ~250 GeV

Summary

- HH physics offers wide physics program at LHC
 - HHVV, tri-H couplings + effective BSM couplings
 - Search for BSM resonances
- Presented CMS Run 2 results
 - No deviations from SM predictions observed so far
 - New techniques and approaches wrt 2016 analyses
 - Other interesting results coming stay tuned!
- Quickly approaching to upper limit on HH XS equal to SM
 - Run 3?

Exciting times ahead!

BACKUP

Non-resonant resolved HH→4b results by category and by year

HH multilepton - resonant search results

No significant excess found

Upper limit on $\sigma(pp \rightarrow X \rightarrow HH \rightarrow 4b)$

HH multilepton - JHEP04 benchmark results

No significant excess found

HH→bbyy at ATLAS with 139 fb⁻¹ - results

No deviations from SM observed

Limit on spin 0 resonance with mass m_x and narrow width

Obs. limit between 620 and 50 fb for $m_x \in [251, 1000]$ GeV

m*_{bbyy} advantages

- Reduce effect of jet and photon energy resolution
- ~falling shape for non-resonant bkg
- peak at m_x for resonant HH signal

VBF HH→bbbb at ATLAS with 127 fb⁻¹ - results

No deviations from SM observed

Limit on VBF HH XS vs k_{2V}

Obs. $k_{2V} \in [-0.43, 2.56]$ Exp. $k_{2V} \in [-0.55, 2.72]$ Limit on spin 0 resonance with mass m_x and narrow width

Obs. limit between 10^3 and 4 fb for $m_x \in [260, 1000]$ GeV

Boosted $X \rightarrow HH \rightarrow bb\tau_h \tau_h$ at ATLAS with 139 fb⁻¹

- For large m_χ non-resolved
 τ_hτ_h (and bb jets) pairs
- Innovative reco and ID of non-resolved τ_hτ_h pair Large-R jets with jet substructures

Reconstructed HH→bbtt candidate on ATLAS transverse plane

HH projection for HL-LHC at CMS and ATLAS

- Focus on most sensitive HH decay channels
- Based on MC simulations with pileup conditions and detector performance expected for HL-LHC
- Analyses optimized for 3000 fb⁻¹ of integrated lumi
- Studies extended for <u>Snowmass 2021</u>
 - New analysis techniques, additional HH production modes and final states

CMS-ATLAS HH combination @HL-LHC

<u>CERN</u>	<u>Yellow</u>	report V	/ol. 7 ((2019)

HH channel	Significance (standard deviations)		
	ATLAS	CMS	
bbbb	0.61	0.95	
bbтт	2.1	1.4	
bbyy	2.0	1.8	
bbVV(llvv)	-	0.56	
bbZZ(4ℓ)	-	0.37	
Combined	3.0	2.6	
Combination	4.0		

w/o syst. uncertainties 4.5σ

- Evidence of SM HH expected with 4σ
- Minimization of syst. uncertainties will be crucial
 - Theory, heavy-flavor jet ID, τ reconstruction & ID, ...

Improvements from Snowmass studies

- ATLAS Run 2 HH→bbγγ and ⊋¹²
 bbττ results projected to 3 ab⁻¹√√√ 10
 - 30(10)% improvement on SM HH bbττ(bbγγ) wrt yellow report mostly from improved analysis techniques
 - bbγγ precision on k_λ improved through event classification on 4-body mass

- CMS HH→bbyy projection re-optimized with updated MVA architecture and VBF HH cat's
 - 20% improvement wrt yellow report
 - + New projections for HH→WWyy and TTyy final states

HH projections for HL-LHC with Snowmass updates

 Naive combination assuming no correlations between channels and experiments

HH channel	Significance (standard deviations)		
	ATLAS	CMS	
bbbb	0.61	0.95	
рри	2.1 2.8	1.4	
ppåå	2.0 2.2	1.8 2.16	
bbVV(llvv)	-	0.56	
bbZZ(4ℓ)	-	0.37	
WWyy + TTYY	-	0.22	
My naive combination	4.0 4.6		

+ upper limit on ttHH(4b) XS of 3.14 XSM @95% CL

➤ Improvement of results possible through new techniques & ideas—observation of HH?

Impact of resonance width on X→HH sensitivity

ATLAS X→HH→bb search with 127 fb⁻¹

Limit on spin 0 resonance with mass m_x and narrow width

Limit on spin 0 resonance with mass m_x and broad width

HH→bb2l at ATLAS with 139 fb⁻¹ of data

- H→W*W / Z*Z / TT final states with 2ℓ
 - lept. and b-jet ID
 - \circ selections on $\mathsf{m}_{\ell\ell}$ and $\mathsf{m}_{\mathsf{b}\mathsf{b}}$

Main backgrounds from tt+X and Z/y*+heavy-jets events

- DNN multiclassifier to optimize signal vs bks separation
- Counting experiment in high DNN score region

obs.(exp.) upp. lim. on SM HH XS 40(29) ★ SM

Trilinear self-coupling in single-H mechanisms

 λ-dependent NLO electroweak corrections to single-H XS

Examples of λ-dependent diagrams for single-H mechanisms

Modification of total XS

Modification of diff. XS

λ measurement from single-double H comb

Reduce k_{λ} - k_{t} degeneracy

- Treatment of experimental overlap between H and HH sig regions
- Data interpretation currently with k-framework + k_λ effects