

Predictions for $gg \to hh$ at full NLO QCD comparing non-linear and linear EFT frameworks and truncation effects

Higgs Pairs Workshop 2022, Wildcard talk

Jannis Lang in collaboration with Gudrun Heinrich and Ludovic Scyboz [2204.13045] | June 3, 2022

INSTITUTE FOR THEORETICAL PHYSICS

Outline

2 HEFT and SMEFT

INLO cross section

Truncation effects in invariant mass distribution

Summary and Outlook

うくの 正則 《川々 《川々 書》 《四》 《日》

Jannis Lang - gg	$\rightarrow hh$ at NLO QCD compar	ing HEFT and SMEFT wi	June 3, 2022	2/1	7	
0	0000	00	0000	000	0	
Motivation	HEFT and SMEFT	POWHEG code	NLO cross section	Truncation effects in invariant mass distribution	Summary and O	utlook

Why study hh production?

Karbruhe Institute of Technology

- Higgs potential largely unknown
- ⇒ Trilinear Higgs coupling accessible in *hh* production

 However, BSM deviations should enter in systematic way!

うっつ 正則 ふぼくふせく 白マ

Truncation effects in invariant mass	distribution	Summary and Outlook
	June 3, 2022	3/17

Two distinct EFT systematics: HEFT vs. SMEFT

- **HEFT**: **BSM**: can be strongly coupling New Physics
 - non-linear theory (EW χ L), chiral counting of operators $d_{\chi}(\partial, \bar{\psi}\psi, g, y) = 1$
 - light Higgs is EW gauge singlet h(x), Goldstones have non-trivial transformation properties
 - expansion in $\frac{f^2}{\Lambda^2} \sim \frac{1}{16\pi^2}$ (\Rightarrow loop counting):

$$\mathcal{L}_{\mathsf{HEFT}} \sim \mathcal{L}_{d_{\chi}=2} + \sum_{L=1} \sum_{i} \left(rac{1}{16\pi^2}
ight)^L c_i \, \mathcal{O}_i^{(d_{\chi}=2+2L)}$$

- SMEFT: BSM: lightly coupling New Physics
 - light Higgs contained in EW doublet field $\phi(x)$
 - canonical counting (expansion in $\frac{1}{\Lambda}$):

$$\mathcal{L}_{SMEFT} = \mathcal{L}_{SM} + \sum_{n=1} \sum_{i} \frac{\mathcal{C}_{i}}{\Lambda^{2n}} \mathcal{O}_{i}^{(4+2n)}$$

うとの 単面 不明を不明を不良をくしゃ

Motivation	HEFT and SMEFT	POWHEG code	NLO cross section	Truncation effects in invariant mass dis	stribution	Summary an	d Outlool
0	●000	00	0000	000		0	
Jannis Lang – g	gg ightarrow hh at NLO QCD com	paring HEFT and SMEF		June 3, 2022		4/17	

Relevant Lagrangian terms for hh

HEFT:

Motivation

$$\mathcal{L}_{\textit{HEFT}} \supset - m_t \left(c_t rac{h}{v} + c_{tt} rac{h^2}{v^2}
ight) \overline{t}t - c_{hhh} rac{m_h^2}{2v} h^3 + rac{lpha_s}{8\pi} \left(c_{ggh} rac{h}{v} + c_{gghh} rac{h^2}{v^2}
ight) G^a_{\mu
u} G^{a\ \mu
u}$$

$$\begin{array}{ll} \text{SMEFT:} & \mathcal{L}_{\textit{SMEFT}}^{\textit{(Warsaw)}} \supset \frac{\mathcal{C}_{H\Box}}{\Lambda^2} \left(\phi^{\dagger} \phi \right) \Box \left(\phi^{\dagger} \phi \right) + \frac{\mathcal{C}_{HD}}{\Lambda^2} \left(\phi^{\dagger} D_{\mu} \phi \right) \left(\phi^{\dagger} D^{\mu} \phi \right) + \frac{\mathcal{C}_{H}}{\Lambda^2} \left(\phi^{\dagger} \phi \right)^3 \\ & + \left(\frac{\mathcal{C}_{uH}}{\Lambda^2} \left(\phi^{\dagger} \phi \right) \bar{q}_L \phi^c t_r + h.c. \right) \\ & + \frac{\mathcal{C}_{HG}}{\Lambda^2} \left(\phi^{\dagger} \phi \right) G^a_{\mu\nu} G^{a\ \mu\nu} & \boxed{\text{HEFT}} \underbrace{\text{Warsaw}}_{z=z} \end{array}$$

Naive translation SMEFT \leftrightarrow HEFT after field redefinition up to $\mathcal{O}\left(\frac{1}{\Lambda^2}\right)$ in Lagrangian $(C_{H,kin} = C_{H\Box} - 4C_{HD})$

 $\begin{array}{lll} \text{However, formally:} \\ \hline c_i \sim \mathcal{O}(1) \text{ possible } & \leftrightarrow & \frac{E^2}{\Lambda^2} \textit{C}_i \ll 1 \end{array}$

HEFT and SMEFT

0000

Jannis Lang – gg
ightarrow hh at NLO QCD comparing HEFT and SMEFT with truncation effects

POWHEG code

June 3, 2022

5/17

SMEFT truncation

⇒ Double operator insertion same order as (neglected) dimension 8 operators (and field redefinition)!

Motivation	HEFT and SMEFT	POWHEG code	NLO cross section	Truncation effects in invariant mass distribution	Summary and Outlook
0	0000	00	0000	000	0
Jannis Lang – gg	$h \to hh$ at NLO QCD compa	ring HEFT and SMEFT w	ith truncation effects	June 3, 2022	6/17

SMEFT truncation

Several possibilities for SMEFT truncation of final result:

 $\sigma \simeq \begin{cases} \sigma_{\rm SM} + \sigma_{\rm SM \times dim6} & (a) & \text{Truncation at leading order in 1/A} \\ \sigma_{\rm (SM+dim6) \times (SM+dim6)} & (b) & \text{of cross section (commonly used, if SM s} \\ \sigma_{\rm (SM+dim6) \times (SM+dim6)} + \sigma_{\rm SM \times dim6^2} & (b) & \text{of amplitude (commonly used, if SM s} \\ \sigma_{\rm (SM+dim6) \times (SM+dim6)} + \sigma_{\rm SM \times dim6^2} & (c) & \text{Truncate cross section at } \mathcal{O}(1/A^4) & \text{from the section of the section$ (a) Truncation at leading order in $1/\Lambda$ of cross section (commonly used, if SM unsuppressed) (b) of amplitude (commonly used, if SM suppressed) (c) Truncate cross section at $O(1/\Lambda^4)$ from all dim6 operator insertions (ambiguous definition)

POWHEG code $ggHH_SMEFT$

built on NLO HEFT code with full m_t dependence ggHH

 available at http://powhegbox.mib.infn.it as User-Processes-V2/ggHH [Borowka,Greiner,Heinrich,Jones,Kerner,et al. '16] [Heinrich,Jones,Kerner,Luisoni,Vryonidou '17] [Heinrich,Jones,Kerner,Luisoni,Scyboz '19] [Heinrich,Jones,Kerner,Scyboz '20]

- modified for SMEFT Warsaw input and truncation options (a)-(d):
 - modified GoSam 1-loop files interfaced to POWHEG for reals
 - HEFT virtuals available as function of 23 grids a_i

$$\begin{split} \left|\mathcal{M}_{NLO}\right|^{2} = & a_{1} \cdot c_{t}^{4} + a_{2} \cdot c_{tl}^{2} + a_{3} \cdot c_{t}^{2} c_{phh}^{2} + a_{4} \cdot c_{ggh}^{2} c_{hhh}^{2} + a_{5} \cdot c_{gghh}^{2} + a_{6} \cdot c_{tl} c_{t}^{2} + a_{7} \cdot c_{t}^{3} c_{hhh} \\ & + a_{8} \cdot c_{tl} c_{t} c_{hhh} + a_{9} \cdot c_{t} c_{ggh} c_{hhh} + a_{10} \cdot c_{tl} c_{gghh} + a_{11} \cdot c_{t}^{2} c_{ggh} c_{hhh} + a_{12} \cdot c_{t}^{2} c_{gghh} \\ & + a_{13} \cdot c_{t} c_{hhh}^{2} c_{ggh} + a_{14} \cdot c_{t} c_{hhh} c_{gghh} + a_{15} \cdot c_{ggh} c_{hhh} + a_{16} \cdot c_{t}^{2} c_{ggh} \\ & + a_{17} \cdot c_{t} c_{t} c_{ggh} + a_{18} \cdot c_{t} c_{ggh}^{2} c_{hhh} + a_{19} \cdot c_{t} c_{ggh} c_{gghh} + a_{20} \cdot c_{t}^{2} c_{ggh}^{2} \\ & + a_{21} \cdot c_{tt} c_{ggh}^{2} + a_{22} \cdot c_{ggh}^{3} c_{hhh} + a_{23} \cdot c_{ggh}^{2} c_{gghh} \end{split}$$

⇒ virtual grids can be directly reused for SMEFT except for truncation (b), where additional 1-loop contibutions are added analytically

Motivation	HEFT and SMEFT	POWHEG code	NLO cross section	Truncation effects in invariant mass distribution	Summary and Outlo	ook
0	0000	•0	0000	000	0	
Jannis Lang - gg	\rightarrow <i>hh</i> at NLO QCD compa	ring HEFT and SMEFT w	ith truncation effects	June 3, 2022	8/17	

POWHEG code $ggHH_SMEFT$

Usage of code (only new part of the input file is shown):

! Choose EFT parametrization usesmeft 0 ! 9: use HEFT parametrization and ignore CHbox, CH, CUH, CHG (no truncation); ! 1: use SMEFT (Warsow) parametrization and ignore Chbh, ct, ctt, cggh, cgghh (with truncation); ! 2: use HEFT parametrization and ignore CHbox, CH, CUH, CHG (with truncation!, testing purpose/SILH-Lag. calculation)
1 Values of the Higgs couplings w.r.t SMI HEFT parametrization
chini 1.0 : interferen reggs sette-coupling
et a a l Two tan-two lings (this) courling
radh a l Effective allon-allon-allon-allon-allon-
caph 0.0 I Effective two-gluon-twogs coupling
ayynn olo i Ellestie ne ytaan ne nyyses aawrthy
! Values of the Higgs couplings using SMEFT (Warsaw) parametrization (Wilson coefficients enter as C/Lambda^2)
Lambda 1.0 ! EFT counting mass Scale (in TeV)
CHbox 0.0 ! Kinetic term of SU(2)_L singlet (with d'Alembert operator)
CHD 0.0 ! second Kinetic term
CH 0.0 ! Additional term to Higgs potential
CuH 0.0 ! Modified Yukawa term
CHG 0.0 ! Higgs-Glue-Glue operator
i iruncation options:
1 3: cross section based on [A_SM=A_dlm0+A_db1dlm0]'2
: 2: cross section based on [A_SHTA_dumo] 2*2*Ne(A_SH x conj(A_dulatmo))
: 1: Cross section based on [A_SHTFA_dumo] 2
i e: cross section based on [A_SH] 2+2*Re(A_SH*Conj(A_dlmo))
muttiple-insertion 1

multiple-insertion $0, \ldots, 3 \quad \leftrightarrow \quad \text{truncation option} \quad (a), \ldots, (d)$

⇒ now available at http://powhegbox.mib.infn.it as /User-Processes-V2/ggHH_SMEFT

[Heinrich,JL,Scyboz

'22								
Motivation	HEFT and SMEFT	POWHEG code	NLO cross section	Truncation effects in invariant mass distribution	Summary and Outlook			
0	0000	00	0000	000	0			
Jannis Lang $- qq \rightarrow hh$ at NLO QCD comparing HEFT and SMEFT with truncation effects June 3, 2022								

NLO HEFT cross section parametrised as function of coefficients A_i (similar to $|\mathcal{M}_{NLO}|^2$)

$$\begin{aligned} \frac{\sigma_{BSM}}{\sigma_{SM}} &= A_1 \cdot c_l^4 + A_2 \cdot c_{tt}^2 + A_3 \cdot c_l^2 c_{hhh}^2 + A_4 \cdot c_{ggh}^2 c_{hhh}^2 + A_5 \cdot c_{gghh}^2 + A_6 \cdot c_{tt} c_l^2 + A_7 \cdot c_l^3 c_{hhh} \\ &+ A_8 \cdot c_{tt} c_l c_{hhh} + A_9 \cdot c_{tt} c_{ggh} c_{hhh} + A_{10} \cdot c_{tt} c_{gghh} + A_{11} \cdot c_l^2 c_{ggh} c_{hhh} + A_{12} \cdot c_l^2 c_{gghh} \\ &+ A_{13} \cdot c_l c_{hhh}^2 c_{ggh} + A_{14} \cdot c_l c_{hhh} c_{gghh} + A_{15} \cdot c_{ggh} c_{hhh} c_{gghh} + A_{16} \cdot c_l^3 c_{ggh} \\ &+ A_{17} \cdot c_l c_{tt} c_{gghh} + A_{18} \cdot c_l c_{ggh}^2 c_{hhhh} + A_{19} \cdot c_l c_{ggh} c_{gghh} + A_{20} \cdot c_l^2 c_{ggh}^2 \\ &+ A_{21} \cdot c_{tt} c_{ggh}^2 + A_{22} \cdot c_{ggh}^3 c_{hhh} + A_{23} \cdot c_{ggh}^2 c_{gghh} \end{aligned}$$

Translation:

HEFT	Warsaw
C _{hhh}	$1 - 2 rac{v^2}{\Lambda^2} rac{v^2}{m_h^2} C_H + 3 rac{v^2}{\Lambda^2} C_{H, \mathrm{kin}}$
Ct	$1 + rac{v^2}{\Lambda^2} C_{H, \mathrm{kin}} - rac{v^2}{\Lambda^2} rac{v}{\sqrt{2}m_t} C_{uH}$
c _{tt}	$-rac{v^2}{\Lambda^2}rac{3v}{2\sqrt{2}m_t} C_{uH} + rac{v^2}{\Lambda^2} C_{H,\mathrm{kin}}$
C _{ggh}	$\frac{v^2}{\Lambda^2} \frac{8\pi}{\alpha_s} C_{HG}$
C _{gghh}	$\frac{v^2}{\Lambda^2} \frac{4\pi}{\alpha_s} C_{HG}$

Truncation:

$$\sigma_{\rm SM} + \sigma_{\rm SM \times dim6}$$
 (a)

$$\sigma_{(SM+dim6)\times(SM+dim6)}$$
 (b

$$\simeq \begin{cases} \sigma_{(SM+\dim 6)\times(SM+\dim 6)} + \sigma_{SM\times\dim 6^2} & (c - c) \end{cases}$$

$$\sigma_{(SM+\dim 6+\dim 6^2)\times(SM+\dim 6+\dim 6^2)}$$
 (d)

<ロ> < 母 > < 臣 > < 臣 > 王 = のへの

Motivation	HEFT and SMEFT	POWHEG code	NLO cross section	Truncation effects in invariant mass distribution	Summary and Outlook
0	0000	00	●000	000	0
Jannis Lang - gg	ightarrow hh at NLO QCD compared	ring HEFT and SMEFT w	ith truncation effects	June 3, 2022	10/17

 σ

Motivation

Generated at $\sqrt{s} = 13$ TeV with $\Lambda = 1$ TeV

Jannis Lang $-ag \rightarrow hh$ at NLO QCD comparing HEFT and SMEFT with truncation effects

イロト イヨト イヨト チョコ わらの

June 3, 2022	11/17	
invariant mass distribution	Summary and Outlool	<

Consider benchmark points for characteristic *m_{hh}* shapes in HEFT

- benchmark 1: enhanced low m_{hh} region
- benchmark 3: enhanced low m_{hh} and second local maximum above $m_{hh} \simeq 2m_t$
- benchmark 6: close-by double peaks or shoulder left

benchmark ($^* =$ modified)	C _{hhh}	C _t	C _{tt}	C _{ggh}	C gghh	$C_{H,\mathrm{kin}}$	Сн	C_{uH}	C_{HG}	٨
SM	1	1	0	0	0	0	0	0	0	1 TeV
1*	5.105	1.1	0	0	0	4.95	-6.81	3.28	0	1 TeV
3	2.21	1.05	$-\frac{1}{3}$	0.5	0.25*	13.5	2.64	12.6	0.0387	1 TeV
6*	-0.684	0.9	$-\frac{1}{6}$	0.5	0.25	0.561	3.80	2.20	0.0387	1 TeV

(compare [Capozi, Heinrich '19], new benchmarks fulfilling current constraints by Ludovic Scyboz)

$$\Rightarrow$$
 SMEFT expansion based on $E^2 \frac{C_i}{\Lambda^2} \ll 1$ justified?

ふりく 川川 ふかく 山マ ふしゃ

 $\begin{array}{cccc} \text{Motivation} & \text{HEFT} & \text{and} & \text{SMEFT} & \text{POWHEG code} & \text{NLO cross section} & \text{Truncation effects in invariant mass distribution} & \text{Summary and Outlook} & \text{Outlook} & \text{Outlook}$

Generated at $\sqrt{s} = 13 \text{ TeV}$

benchmark	$\sigma_{ m NLO}$ [fb] option (b)	K-factor option (b)	ratio to SM option (b)	$\sigma_{ m NLO}$ [fb] option (a)	$\sigma_{ m NLO}$ [fb] HEFT					
SM	$27.94^{+13.7\%}_{-12.8\%}$	1.67	1	-	-					
		$\Lambda = 1$	TeV							
1	74.29 ^{+19.8%}	2.13	2.66	-61.17	94.32					
3	69.20 ^{+11.7%}	1.82	2.47	29.64	72.43					
6	$72.51^{+20.6\%}_{-16.4\%}$	1.90	2.60	52.89	91.40					
$\Lambda = 2 \text{TeV}$										
1	$14.03^{+12.0\%}_{-11.9\%}$	1.56	0.502	5.58	-					
3	$30.81^{+16.0\%}_{-14.4\%}$	1.71	1.10	28.35	-					
6	35.39 ^{+17.5%} 	1.76	1.27	34.18	-					

Motivation

HEFT and SMEFT

POWHEG code

NLO cross section

Truncation effects in invariant mass distribution

Summary and Outlook

Jannis Lang – gg
ightarrow hh at NLO QCD comparing HEFT and SMEFT with truncation effects

June 3, 2022

13/17

Invariant mass distributions at NLO QCD ($\sqrt{s} = 13$ TeV)

truncation (a): negative cross sections

- shape approaches SM for increasing Λ
- $\Rightarrow~$ valid HEFT point invalid in SMEFT after direct translation

うかの 正則 ベヨヤ ベヨヤ (日本)

lotivation	HEFT and SMEFT	POWHEG code	NLO cross section	Truncation effects in invariant mass distribution	Summary and Outlook
)	0000	00	0000	•00	0
annis Lang – <i>gg</i>	$\rightarrow hh$ at NLO QCD compa	June 3, 2022	14/17		

Invariant mass distributions at NLO QCD ($\sqrt{s} = 13$ TeV)

HEFT benchmark 3:

C hhh	C_t	Ctt	C _{ggh}	C _{gghh}	$C_{H,\mathrm{kin}}$	C_H	C_{uH}	C_{HG}
2.21	1.05	$-\frac{1}{3}$	0.5	0.25*	13.5	2.64	12.6	0.0387

 truncation (c): double operator insertion quite substantial 				 shape close but distinguishable from SM for increasing Λ 				
otivation	HEFT and SMEFT	POWHEG code	NLO cross section	Truncation effects in invariar	nt mass distribution	Summary and O	utlook	
nnis Lang – <i>a</i> d	$h \to hh$ at NLO QCD com	paring HEFT and SMEF	T with truncation effects		June 3, 2022	15/17	7	

Invariant mass distributions at NLO QCD ($\sqrt{s} = 13$ TeV)

Chhh	Ct	Ctt	C ggh	C gghh	$C_{H,kin}$	Сн	С _{иН}	Сна
-0.684	0.9	$-\frac{1}{6}$	0.5	0.25	0.561	3.80	2.20	0.0387

no negative cross section

• shape indistinguishable from SM for $\Lambda = 4$ TeV within scale uncertainties

Motivation	HEFT and SMEFT	POWHEG code	NLO cross section	Truncation effects in invariant mass distribution	Summary and Outlook
0	0000	00	0000	000	0
Jannis Lang – gg	$h \to hh$ at NLO QCD compa	ring HEFT and SMEFT w	June 3, 2022	16/17	

Summary

- NLO QCD code ggHH_SMEFT for SMEFT (and HEFT)
- comparison of HEFT and SMEFT and of different SMEFT truncation options
- naive translation from HEFT \rightarrow SMEFT can lead out of validity of $\frac{1}{\Lambda^2}$ expansion
- valid SMEFT points close to SM, often hardly distinguishable from SM within scale uncertainties
- Outlook: running Wilson coefficients and inclusion of loop-suppressed chromo-magnetic operator O_{tG}, 4-fermion operators, ...

Loop counting in SMEFT and chromo-magnetic operator

Following the procedure of Loop counting matters in SMEFT [Buchalla, Heinrich, Müller-Salditt, Pandler '22]