New constraints on extended Higgs sectors from the trilinear Higgs coupling

Based on

arXiv:2202.03453 in collaboration with Henning Bahl and Georg Weiglein,

(as well as arXiv:1903.05417 (PLB), 1911.11507 (EPJC) in collaboration with Shinya Kanemura)

Johannes Braathen

Higgs Pairs Workshop 2022, Dubrovnik, Croatia | June 2, 2022

Why study the Higgs trilinear coupling?

Since the Higgs discovery, the existence of the Higgs potential is confirmed, but at the moment we only know: \rightarrow the location of the EW minimum:

 $V^{(0)}$

 \rightarrow the curvature of the potential around the EW minimum:

m_h = 125 GeV

v = 246 GeV

However we still don't know the **shape** of the potential, away from EW minimum \rightarrow depends on λ_{hbh}

λ_{hhh} determines the nature of the EWPT!

Probing the Higgs potential:

۶

≻

 \Rightarrow O(20%) deviation of λ_{hhh} from its SM prediction needed to have a strongly first-order EWPT \rightarrow necessary for EWBG [Grojean, Servant, Wells '04], [Kanemura, Okada, Senaha '04]

??' ???

v = 246 GeV

New in this talk: studying λ_{hhh} can also serve to constrain the parameter space of BSM models!

BSM contributions to λ_{hhh}

The Two-Higgs-Doublet Model

- > 2 SU(2)_L doublets $\Phi_{1,2}$ of hypercharge $\frac{1}{2}$
- > CP-conserving 2HDM, with softly-broken Z_2 symmetry $(\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2)$ to avoid tree-level FCNCs

$$V_{2\text{HDM}}^{(0)} = m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_3^2 (\Phi_2^{\dagger} \Phi_1 + \Phi_1^{\dagger} \Phi_2) + \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_2^{\dagger} \Phi_1|^2 + \frac{\lambda_5}{2} \left((\Phi_2^{\dagger} \Phi_1)^2 + \text{h.c.} \right) v_1^2 + v_2^2 = v^2 = (246 \text{ GeV})^2$$

Mass eigenstates:

h, H: CP-even Higgs bosons ($h \rightarrow 125$ -GeV SM-like state); A: CP-odd Higgs boson; H[±]: charged Higgs boson; α : CP-even Higgs mixing angle

- > **BSM parameters**: 3 BSM masses m_{H} , m_{A} , $m_{H\pm}$, BSM mass scale M (defined by $M^2 \equiv 2m_3^2/s_{2\beta}$), angles α and β (defined by $\tan\beta = v_2/v_1$)
- ▶ **BSM-scalar masses** take form $m_{\Phi}^2 = M^2 + \tilde{\lambda}_{\Phi}v^2$, $\Phi \in \{H, A, H^{\pm}\}$
- → We take the **alignment limit** α =β-π/2 → all Higgs couplings are SM-like at tree level → compatible with current experimental data!

Non-decoupling effects in λ_{hhh}

First investigation of 1L BSM contributions to λ_{hhh} in 2HDM:
[Kanemura, (Kiyoura), Okada, Senaha, Yuan '02. '04]

> Deviations of tens/hundreds of % from SM possible, for large $g_{h\phi\phi}$ or $g_{hh\phi\phi}$ couplings

$$g_{hh\Phi\Phi} = -\frac{2(M^2 - m_{\Phi}^2)}{v^2}, \quad \Phi \in \{H, A, H^{\pm}\}$$

(new class of couplings not present at tree level

- \rightarrow no issue with perturbativity!)
- Non-decoupling effects, now found in various models (2HDM, inert doublet model, singlet extensions, etc.)

Non-decoupling effects in λ_{hhh}

First investigation of 1L BSM contributions to λ_{hhh} in 2HDM:
[Kanemura, (Kiyoura), Okada, Senaha, Yuan '02. '04]

> Deviations of tens/hundreds of % from SM possible, for large $g_{h\Phi\Phi}$ or $g_{hh\Phi\Phi}$ couplings

$$g_{hh\Phi\Phi} = -\frac{2(M^2 - m_{\Phi}^2)}{v^2}, \quad \Phi \in \{H, A, H^{\pm}\}$$

(new class of couplings not present at tree level

- \rightarrow no issue with perturbativity!)
- Non-decoupling effects, now found in various models (2HDM, inert doublet model, singlet extensions, etc.)
- **DESY.** | Higgs Pairs 2022 | Johannes Braathen (DESY) | June 2, 2022

Non-decoupling effects confirmed at 2L in [JB, Kanemura '19]

 \rightarrow leading 2L corrections involving BSM scalars (H,A,H[±]) and top quark, computed in effective potential approximation

Constraining the 2HDM with λ_{hhh}

i. Can we apply the limits on κ_{λ} , extracted from experimental searches for double-Higgs production, for BSM models?

ii. Can large BSM deviations occur for points still allowed in light of theoretical and experimental constraints? If so, how large can they become?

Can we apply hh-production results for the aligned 2HDM?

- Current strongest limit on κ_{λ} are from ATLAS double-Higgs searches -1.0 < κ_{λ} < 6.6 [ATLAS-CONF-2021-052]
- What are the assumptions for the ATLAS limits?
 - All other Higgs couplings (to fermions, gauge bosons) are SM-like
 - \rightarrow this ensured by the alignment \checkmark
 - The modification of λ_{hhh} is the only source of deviation of the *non-resonant Higgs-pair production cross section* from the SM

> We can apply the ATLAS limits to our setting!

(Note: BSM resonant Higgs-pair production cross section also suppressed at LO, thanks to alignment)

[recall $\kappa_{\lambda} \equiv \lambda_{hhh} / (\lambda_{hhh}^{(0)})^{SM}$]

A parameter scan in the aligned 2HDM

- Our strategy:
 - Scan BSM parameter space, keeping only points passing various theoretical and experimental constraints (see below)
 - Identify regions with large BSM deviations in λ_{hhh} 2.
 - 3. Devise a **benchmark scenario** allowing large deviations and investigate impact of experimental limit on λ_{hhh}
- *Here*: we consider an **aligned 2HDM of type-I**, but similar results expected for other 2HDM types, or other BSM models with extended Higgs sectors
- Constraints in our parameter scan:
 - SM-like Higgs measurements with HiggsSignals
 - Direct searches for BSM scalars with HiggsBounds
- experimental b-physics constraints, using results from [Gfitter group 1803.01853]
 - Vacuum stability
 - Boundedness-from-below of the potential
- theoretical EW precision observables, computed at two loops with THDM_EWPOS [Hessenberger, Hollik '16]
 - NLO perturbative unitarity, using results from [Grinstein et al. 1512.04567], [Cacchio et al. 1609.01290]
- For points passing these constraints, we compute κ_{λ} at 1L and 2L, using results from [JB, Kanemura '19]

Checked with ScannerS

Parameter scan results

 $\underline{\text{Mean value}} \text{ for } \kappa_{\lambda}^{(2)} = (\lambda_{\text{hhh}}^{(2)})^{2\text{HDM}} / (\lambda_{\text{hhh}}^{(0)})^{\text{SM}} \text{ [left] and } \kappa_{\lambda}^{(2)} / \kappa_{\lambda}^{(1)} = (\lambda_{\text{hhh}}^{(2)})^{2\text{HDM}} / (\lambda_{\text{hhh}}^{(1)})^{2\text{HDM}} \text{ [right] in } \{m_{\text{H}}^{-} m_{\text{H}\pm}^{-}, m_{\text{H}\pm}^{-} \} \text{ plane}$

NB: all previously mentioned constraints are fulfilled by the points shown here

Parameter scan results

<u>Mean value</u> for $\kappa_{\lambda}^{(2)} = (\lambda_{hhh}^{(2)})^{2HDM} / (\lambda_{hhh}^{(0)})^{SM}$ [left] and $\kappa_{\lambda}^{(2)} / \kappa_{\lambda}^{(1)} = (\lambda_{hhh}^{(2)})^{2HDM} / (\lambda_{hhh}^{(1)})^{2HDM}$ [right] in {m_H-m_{H±}, m_A-m_{H±}} plane

2L corrections can become significant (up to ~70% of 1L)

Parameter scan results

<u>Mean value</u> for $\kappa_{\lambda}^{(2)} = (\lambda_{hhh}^{(2)})^{2HDM} / (\lambda_{hhh}^{(0)})^{SM}$ [left] and $\kappa_{\lambda}^{(2)} / \kappa_{\lambda}^{(1)} = (\lambda_{hhh}^{(2)})^{2HDM} / (\lambda_{hhh}^{(1)})^{2HDM}$ [right] in {m_H-m_{H±}, m_A-m_{H±}} plane

2L corrections can become significant (up to ~70% of 1L)

> Huge enhancements (by a factor ~10) of λ_{hhh} possible for $m_A \sim m_{H\pm}$ and $m_H \sim M$

DESY. | Higgs Pairs 2022 | Johannes Braathen (DESY) | June 2, 2022

A benchmark scenario in the aligned 2HDM

Results shown for aligned 2HDM of type-I, similar for other types (*available in backup*) We take $m_A = m_{H^+}$, $M = m_{H^+}$, $tan\beta = 2$

Grey area: area excluded by other constraints, in particular Higgs physics, boundedness-frombelow (BFB), perturbative unitarity

[Bahl, JB, Weiglein 2202.03453]

- Light red area: area excluded both by other constraints (BFB, perturbative unitarity) and by $\kappa_{\lambda^{(2)}} > 6.6$ [in region where $\kappa_{\lambda^{(2)}} < -1.0$ the calculation isn't reliable]
- > **Dark red area:** new area that is **excluded ONLY by** $\kappa_{\lambda}^{(2)} > 6.6$. Would otherwise not be excluded!
- Blue hatches: area excluded by $\kappa_{\lambda}^{(1)} > 6.6 →$ impact of including 2L corrections is significant!

A benchmark scenario in the aligned 2HDM

Results shown for aligned 2HDM of type-I, similar for other types (*available in backup*) We take $m_{A}=m_{H+}$, M=m_H, tan β =2

Grey area: area excluded by other constraints, in particular Higgs physics, boundedness-frombelow (BFB), perturbative unitarity

[Bahl, JB, Weiglein 2202.03453]

- Light red area: area excluded both by other constraints (BFB, perturbative unitarity) and by $\kappa_{\lambda^{(2)}} > 6.6$ [in region where $\kappa_{\lambda^{(2)}} < -1.0$ the calculation isn't reliable]
- > **Dark red area:** new area that is **excluded ONLY by** $\kappa_{\lambda}^{(2)} > 6.6$. Would otherwise not be excluded!
- Blue hatches: area excluded by $\kappa_{\lambda}^{(1)} > 6.6 →$ impact of including 2L corrections is significant!

A benchmark scenario in the aligned 2HDM – future prospects

Suppose for instance the upper bound on κ_{λ} becomes $\kappa_{\lambda} < 2.3$

- [>] **Golden area:** additional exclusion if the limit on κ_{λ} becomes $\kappa_{\lambda}^{(2)} < 2.3$ (achievable at HL-LHC)
- Experimental constraints, such as Higgs physics, may also become more stringent, however **not** theoretical constraints (like BFB or perturbative unitarity)

A benchmark scenario in the aligned 2HDM – 1D scan

Within the previously shown plane, we fix $M=m_{\mu}=600$ GeV, and vary $m_{\Lambda}=m_{\mu+}$

Illustrates the significantly improved reach of the experimental limit when including **2L corrections** in calculation of κ_{λ}

۶

Summary

- > λ_{hhh} plays a crucial role to understand the shape of the Higgs potential, and probe indirectly signs of New Physics
- λ_{hhh} can deviate significantly from SM prediction (by up to a factor ~10), for otherwise theoretically and experimentally allowed points, due to non-decoupling effects in radiative corrections involving BSM scalars
- Current experimental bounds on λ_{hhh} can already exclude significant parts of otherwise unconstrained BSM parameter space, and future prospects even better! Inclusion of 2L corrections [JB, Kanemura '19] has significant impact.
- In this talk, 2HDM taken as an *example*, but similar results are expected for a wider range of BSM models with extended scalar sectors
 - → further motivates automating calculations of λ_{hhh} → see Martin Gabelmann's talk!

Thank you for your attention!

Contact

DESY. Deutsches Elektronen-Synchrotron

Johannes Braathen DESY Theory group johannes.braathen@desy.de

www.desy.de