Training in Accelerator Science & technology

Philip Burrows

Director,

John Adams Institute for Accelerator Science

Outline

- Introductory remarks
- TIARA education and training surveys
- ARIES + I.FAST
- Forward look

Introductory remarks (1)

- Training is a big topic!
- Community:

Physicists / engineers / technicians ...

Academic level:

Undergraduate / Master's / PhD / staff ...

Delivery:

Lectures, seminars, lab work, 'on the job' ...

Institutions:

Universities, national + international labs, facilities, accelerator schools ...

How many trained people do we need?

How does this help society more generally?

Introductory remarks (2)

- Particle-physics accelerators
- Light sources
- Neutron sources
- Medical accelerators
- Industrial accelerators
- Industry

A lot has been done

 Several EU-funded projects have explicitly addressed the provision of accelerator training in Europe:

TIARA, ARIES, AMICI, I.FAST, EJADE ...

- TIARA, ARIES, I.FAST include dedicated WPs on training coordination (led by PNB)
 - > review of some key activities follows ...

Test Infrastructure and Accelerator Research Area Preparatory Phase

Home page

General information

About TIARA

Accelerator R&D

Fields requiring acc. R&D

TIARA consortium

Participant institutes

Associated institutes

Official documents

FU documents

TIARA documents

Management

Organizational structure

WP1: Consortium

management

Deliverables

Milestones

Agenda

Documentation

Access to TIARA databases

Communication

Press releases and articles

Public presentations

Accelerating News >>

Accelerators for Society

Workshops

TIARA Committees

Governing Council Steering Committee

Project Office

♣ Intranet

Q

The main objective of TIARA is the integration of national and international accelerator R&D infrastructures into a single distributed European accelerator R&D facility with the goal of developing and strengthening stateof-the-art research. competitiveness innovation in a sustainable way in the field of accelerator Science and Technologies in Europe.

Besides maximizing the benefits for the owners of the infrastructures and their users. TIARA aims at establishing a framework for developing and supporting strong joint European programmes:

-) for accelerator Research and Development
-) for education and training
-) for enhancing innovation in collaboration with industry

MEETING DATES

Governing Council

10:00 - 17:00 **Governing Council** meeting (CERN)

Governing Council

Archives »

TIARA Management

Archives »

TIARA-PP extended for one year

HOT NEWS

NEWS

TIARA-PP final general meeting held at Daresbury lab, November 25-27

TIARA WP5: Education & Training

- WP5.1 Make a survey of the number of students, courses and teaching resources in Accelerator Science and establish a common resources database
- WP5.2 Evaluate and develop the "market" for trained Accelerator Scientists (physicists, engineers, technicians) for research, healthcare, industry and public service
- WP5.3 Determine a plan of action for promoting Accelerator Science and Technology within schools, universities, research organisations, industry and society

TIARA WP5 participants

1 CEA: Phu-anh Phi Nghiem, Francois Kircher

2 CERN: Roger Bailey (CAS), Kate Kahle/ Agnes

Szeberenyi (EUCARD), Louis Rinolfi (JUAS)

3 CNRS: Alex Muller, Catherine Clerc

4 CIEMAT: Marisa Marco, Diego Obrador, Susanna Falcon

6 GSI: Oliver Boine-Frankenheim, Sabrina Appel

7 INFN: Vittorio Vaccaro, Francesca Galluccio

8 PSI: Lenny Rivkin

9 STFC: Philip Burrows, Max Bradbury

10 Nordic group: Soren Pape Moeller + Ole Petter Nordahl

11 IFJ: Piotr Malecki

Survey of accelerator training

Training survey topics

- Institutes providing training
- Personnel involved in delivering training
- Type of training
- Numbers and types of students
- Training materials and facilities
- Career destinations

www-based survey

www-based questionnaire

+ interactive www-site of results

Thanks to Max Bradbury

Survey responses

- Responses from 88 institutes across Europe
- We captured the vast majority of the key players

Training survey report

https://cds.cern.ch/record/1442599/files/TIARA-REP-WP5-2012-006.pdf

Test Infrastructure and Accelerator Research Area

TIARA WP5 Deliverable 5.1 - ETR Education and Training Survey Report

2 May 2012

François Kircher, Phu-Anh-Phi Nghiem, CEA, France

Roger Bailey, Louis Rinolfi, CERN, Switzerland

M. Luisa Marco Arboli (WP Deputy), Susana Falcon, Diego Obradors, CIEMAT, Spain

Catherine Clerc, Alex C. Mueller (WP Deputy), CNRS/IN2P3/LLR, France

Leonid Rivkin, EPFL, Switzerland

Sabrina Appel, Oliver Boine-Frankenheim, GSI, Germany

Francesca Galluccio, Vittorio Vaccaro, INFN-Napoli, Italy

Piotr Malecki, Institute of Nuclear Physics, Polish Academy of Sciences, Poland

Søren Pape Møller, ISA, Aarhus University, Denmark

Philip Burrows (WP leader), Max Bradbury, John Adams Institute, University of Oxford, United Kingdom

Pauli Heikkinen, University of Jyväskylä, Finland

Ole Petter Nordahl, Steinar Stapnes, University of Oslo, Norway

The research leading to these results has received funding from the European Commission under the FP7-INFRASTRUCTURES-2010-1/INFRA-2010-2.2.11 project TIARA (CNI-PP).

Content

	EXECUTIVE SUMMARY	3
	1. INTRODUCTION	4
	2. INSTITUTES AND PERSONNEL	5
	3. INSTITUTES' PROVISION OF TRAINING	7
	4. TRAINEE NUMBERS	9
	5. FORMAL TRAINING TIME	14
	6. TRAINING SUBJECTS	19
	7. ACCELERATOR SCHOOLS AND THE CERN DOCTORAL STUDENT PROGRAMME	22
	8. TRAINING MATERIALS AND USE OF FACILITIES	25
	9. CAREER DESTINATIONS	28
	10. SUMMARY OF MAIN FINDINGS	30
	11. OUTLOOK	31
	APPENDIX 1: RESPONDING INSTITUTES AND CONTACT PERSONS	32
	APPENDIX 2: SURVEY	36
	APPENDIX 3: COUNTRY-SPECIFIC ANALYSIS	40
	APPENDIX 4: CAS STATISTICS	54
	APPENDIX 5: JUAS STATISTICS	57
13	APPENDIX 6: NATIONAL AND INTERNATIONAL FACILITIES	59

Grant agreement no 261905.

Survey highlights: institutes

- 88 responding institutes
- 3060 personnel engaged in accelerator science
- 75 institutes (85%) provide training themselves
- 12 institutes plan/desire to train in future

Survey highlights: trainees

1371 people (2011) received formal training:

34% undergraduates

26% masters

14% PhD

7% postdocs

17% staff

Survey highlights: trainees

Survey highlights: trainees

Formal training hours

55 / 75 institutes reported 'formal' training hours

Training subjects

72 institutes reported on training subjects

Training area

Accelerator school attendance

83 institutes send people to accelerator schools:
 339 people (2011)

Use of facilities for training

59 institutes reported using 51 facilities

Career destinations

A surprisingly large amount of training is being provided:

- A surprisingly large amount of training is being provided:
- 75 institutes, 1371 people (2011),
 62777 formal training hours provided (2011)

- A surprisingly large amount of training is being provided:
- 75 institutes, 1371 people (2011),
 62777 formal training hours provided (2011)
- However, for students, accelerator science is typically a small part of overall training,

<< 50 hours per trainee

- A surprisingly large amount of training is being provided:
- 75 institutes, 1371 people (2011),
 62777 formal training hours provided (2011)
- However, for students, accelerator science is typically a small part of overall training,
 - << 50 hours per trainee
- 11 institutes provide > 100 hours to Master's stud

- A surprisingly large amount of training is being provided:
- 75 institutes, 1371 people (2011),
 62777 formal training hours provided (2011)
- However, for students, accelerator science is typically a small part of overall training,
 - << 50 hours per trainee
- 11 institutes provide > 100 hours to Master's stud
- 83 institutes send people to accelerator schools:
 339 people (2011)

- A surprisingly large amount of training is being provided:
- 75 institutes, 1371 people (2011),
 62777 formal training hours provided (2011)
- However, for students, accelerator science is typically a small part of overall training,
 - << 50 hours per trainee
- 11 institutes provide > 100 hours to Master's stud
- 83 institutes send people to accelerator schools:
 339 people (2011)
- At each educational stage, about 1/3 of trainees go to industry, finance, medicine ...

Survey of 'needs' for personnel

Markets surveyed

Major laboratories:

CERN, DESY, GSI, INFN, STFC, CEA, CNRS, CIEMAT ...

- Universities
- Large projects/facilities:

XFEL, FAIR, ESS, MaxIV, SuperB, IFMIF ...

- Companies
- Medical facilities:

X-ray and hadron therapy, isotope production ...

Issues investigated

- How many accelerator personnel required?
- Of what type? physicist, engineer, technician ...
- At what qualification level? PhD, master's, bachelor's ...
- Dedicated training of staff required?
- Issues of recruitment/access?
- Areas of key skills shortages?

Survey responses

- 70 research institutes
 accelerator-related personnel 3638
- 44 companies
 - accelerator-related personnel 993
 - 'patchy' response
 - company data 'anonymised'
 - nevertheless some conclusions can be drawn
- X-ray and hadron therapy facilities

Accelerator personnel

	Research institutes	Nº staff	Companies	Nº staff
France	16	562	2 ¹	87
Germany	5	809	1	10
Italy	12	412	10	95
Nordic countries	10	142	1	90
Poland	2	64	1	504
Spain	9	161	27	137
Switzerland	2	1247	1	45
United Kingdom	16	242	1	25
Total	70	3638	44	993

Table 1. Number of responding research institutes and companies by country

'Needs for accelerator scientists' report

http://cds.cern.ch/record/1521336/files/TIARA-REP-WP5-2013-005.pdf

Test Infrastructure and Accelerator Research Area

TIARA WP5 Deliverable 5.3 - ASR Needs for Accelerator Scientists Report

27 February 2013

François Kircher, Phu-Anh-Phi Nghiem, Celine Tanguy, CEA, France
Roger Bailey, Louis Rinolfi, CERN, Switzerland

M. Luisa Marco Arboli (WP Deputy), Susana Falcon, Diego Obradors, CIEMAT, Spain Catherine Clerc, Alex C. Mueller (WP Deputy), CNRS/IN2P3/LLR, France

Leonid Rivkin, EPFL, Switzerland

Sabrina Appel, Oliver Boine-Frankenheim, GSI, Germany

Francesca Galluccio, Vittorio Vaccaro, INFN Napoli, Italy

Piotr Malecki, Institute of Nuclear Physics, Polish Academy of Sciences, Poland

Søren Pape Møller, ISA, Aarhus University, Denmark

Philip Burrows (WP leader), Max Bradbury, John Adams Institute, University of Oxford, United Kingdom

Ole Petter Nordahl, Steinar Stapnes, University of Oslo, Norway

The research leading to these results has received funding from the European Commission under the FP7-INFRASTRUCTURES-2010-1/INFRA-2010-2.2.11 project TIARA (CNI-PP).

Grant agreement no 261905.

Content

34

EXECUTIVE SUMMARY	3
1. INTRODUCTION	4
2. RESEARCH INSTITUTES	4
3. COMPANIES	11
4. HOSPITALS	18
5. HADRON THERAPY FACILITIES	18
6. IMPROVING THE SUPPLY OF TRAINED PERSONNEL	19
7. SUMMARY OF MAIN FINDINGS	20
8. OUTLOOK	20
REFERENCES	21
APPENDIX 1: SURVEY SPREADSHEET	22
APPENDIX 2: RESPONDING INSTITUTES AND CONTACT PERSONS	23
APPENDIX 3: COUNTRY-SPECIFIC ANALYSIS	26

Recruitment: institutes

Recruitment: companies

Total

Physicists

Engineers

Technicians

Recruitment difficulty: institutes

Recruitment difficulty: companies

Skills shortages: institutes

Skills shortages: companies

Medical facilities

- Europe:
 - 5000 physicists and engineers working in 'medical physics' (EFOMP)
 - > 200 PET cyclotrons in EU
- UK: 700 physicists in 54 radiotherapy depts.
- Vast majority of systems are turn-key
- → Not obvious how many accelerator personnel

Medical facilities

- Europe:
 - 5000 physicists and engineers working in 'medical physics' (EFOMP)
 - > 200 PET cyclotrons in EU
- UK: 700 physicists in 54 radiotherapy depts.
- Vast majority of systems are turn-key
- Not obvious how many accelerator personnel
- Hadron therapy in Europe (PTCOG):
 - 12 operating centres: 10-15 accel. staff each
 - +9 in construction, +2 UK
- → Doubling of trained personnel within 5-10 years?

Projected growth in personnel 18-20% in 5 years: Germany (+24%), Italy (+55%), Nordic (+68%); largely engineers and technicians

- Projected growth in personnel 18-20% in 5 years: Germany (+24%), Italy (+55%), Nordic (+68%); largely engineers and technicians
- Annual recruitment of personnel: institutes 9%, companies 18%

- Projected growth in personnel 18-20% in 5 years:
 Germany (+24%), Italy (+55%), Nordic (+68%);
 largely engineers and technicians
- Annual recruitment of personnel: institutes 9%, companies 18%
- Difficulties in recruiting trained personnel, especially engineers (70%)

- Projected growth in personnel 18-20% in 5 years:
 Germany (+24%), Italy (+55%), Nordic (+68%);
 largely engineers and technicians
- Annual recruitment of personnel: institutes 9%, companies 18%
- Difficulties in recruiting trained personnel, especially engineers (70%)
- Skills shortages: RF, vacuum, beam dynamics, instrumentation + controls, magnets ...

- Projected growth in personnel 18-20% in 5 years:
 Germany (+24%), Italy (+55%), Nordic (+68%);
 largely engineers and technicians
- Annual recruitment of personnel: institutes 9%, companies 18%
- Difficulties in recruiting trained personnel, especially engineers (70%)
- Skills shortages: RF, vacuum, beam dynamics, instrumentation + controls ...
- Training: 94% institutes, 75% of companies; significant need (c. 60%) for external training

Recommendations

- Improving supply of trained personnel
- Improving access to opportunities for personnel

- Improving external access to trained personnel
- Promoting accelerator science in society

Final TIARA WP5 report

https://cds.cern.ch/record/1627600

Test Infrastructure and Accelerator Research Area

TIARA WP5 Deliverable 5.4 Recommendations for promoting accelerator science and technology in Europe

7 November 2013

François Kircher, Phu-Anh-Phi Nghiem, Celine Tanguy, CEA, France

Roger Bailey, Louis Rinolfi, CERN, Switzerland

M. Luisa Marco Arboli (WP Deputy), Susana Falcon, Diego Obradors, CIEMAT, Spain

Catherine Clerc, Alex C. Mueller (WP Deputy), CNRS-IN2P3, France

Leonid Rivkin, EPFL, Switzerland

Sabrina Appel, Oliver Boine-Frankenheim, GSI, Germany

Francesca Galluccio, Vittorio Vaccaro, INFN Napoli, Italy

Piotr Malecki, Institute of Nuclear Physics, Polish Academy of Sciences, Poland

Søren Pape Møller, ISA, Aarhus University, Denmark

Philip Burrows (WP leader), Max Bradbury, John Adams Institute, University of Oxford, United Kingdom

Ole Petter Nordahl, University of Oslo, Norway

Content

EXECUTIVE SUMMARY OF KEY RECOMMENDATIONS	;
1. INTRODUCTION4	ļ
2. IMPROVING THE SUPPLY OF TRAINED PERSONNEL	Ļ
2.1 ACADEMIC TRAINING4	Ļ
2.2 TRAINING OF MEDICAL AND COMPANY PERSONNEL11	L
2.3 DEDICATED TRAINING IN SPECIALISED DISCIPLINES11	L
2.4 ACCESS TO TRAINING-SCHEME INFORMATION12	!
3. IMPROVING OPPORTUNITY ACCESS FOR, AND TO, TRAINED PERSONNEL12	!
3.1 JOB, INTERNSHIP AND OTHER OPPORTUNITY ADVERTISEMENTS12	:
3.2 DATABASE OF EXPERTISE ('PROFESSIONAL REGISTER')13	;
3.3 PROFESSIONAL NETWORKING13	;
3.4 PROPOSAL FOR A WWW-PORTAL OF ACCELERATOR OPPORTUNITIES13	;
4. 'OUTREACH' ACTIVITIES14	Ļ
5. SUMMARY OF PROPOSALS AND REQUIRED RESOURCES15	;
6. DISCUSSION AND CONCLUSIONS19)
ACKNOWLEDGEMENTS21	L
REFERENCES21	L
APPENDIX 1: EXAMPLE WWW-PORTAL22	

The research leading to these results has received funding from the European Commission under the FP7-INFRASTRUCTURES-2010-1/INFRA-2010-2.2.11 project TIARA (CNI-PP).

Grant agreement no 261905.

	Proposal	Estimate of resources needed	Unit cost (Euro)	Number of units
Undergraduate -level training	1. 'e-learning' course, 'Introduction to Accelerator Science and Technology'.	12 months (course setup) + 5 months per annum thereafter (centralised course monitoring and support) + IT infrastructure (server, software tools etc.).	N/A	
_	2. Internships at 'local', or an international, accelerator laboratory.	150,000 Euro + 3 person months, per annum.	Intern month 1,500	100
Master's-level training	3. Bursary support to attend established international and national accelerator schools.	100,000 Euro + 2 person-months, per annum.	Bursary 2,000	50
	4. European Master's fellowship scheme.	200,000 Euro (year 1), 400,000 Euro (year 2 and per annum thereafter) + 2 person months per annum.	Fellowship 20,000 Euro	10
	5. Internships for project work in support of a thesis.	300,000 Euro + 3 person months, per annum.	Intern month 1,000	300
PhD-level training	6. Bursary support to attend established international and national accelerator schools.	100,000 Euro + 2 person-months, per annum.	Bursary 2,000	50
	7. European PhD fellowship scheme.	250,000 Euro (year 1), 500,000 Euro (year 2), 750,000 Euro (year 3 and per annum thereafter) + 2 person months per annum.	Fellowship 25,000	10
Structural support	9. Enhanced accelerator schools provision.	100,000 Euro + 1 person-month, per annum.	N/A	
	10. www-portal	6 months (course setup) + 2 months per annum thereafter (centralised course monitoring and support) + IT infrastructure (server, software tools etc.).		
Outreach	11. Outreach support	1 MEuro per annum	Per country 100,000	10

	Propert	Estimate of resources needed	Unit cost (Euro)	Number of units
Undergraduate -level training	1. 'e-learning' course, 'Introduction to Accelerator Science and Technology'.	It months (course setup) + 5 months per annum thereafter (centralised course monitoring and support) + IT intrastructure (server, software tools etc.).	N/A	
	2. Internships at 'local', or an international, accelerator laboratory.	150,000 Euro + 3 person months, per annum.	Intern month 1,500	100
Master's-level training	3. Bursary support to attend established international and national accelerator schools.	100,000 Euro + 2 person-months, per annum.	Bursary 2,000	50
	4. European Master's fellowship scheme.	200,000 Euro (year 1), 400,000 Euro (year 2 and per annum thereafter) + 2 person months per annum.	Fellowship 20,000 Euro	10
	5. Internships for project work in support of a thesis.	300,000 Euro + 3 person months, per annum.	Intern month 1,000	300
PhD-level training	6. Bursary support to attend established international and national accelerator schools.	100,000 Euro + 2 person-months, per annum.	Bursary 2,000	50
	7. European PhD fellowship scheme.	250,000 Euro (year 1), 500,000 Euro (year 2), 750,000 Euro (year 3 and per annum thereafter) + 2 person months per annum.	Fellowship 25,000	10
Structural support	9. Enhanced accelerator schools provision.	100,000 Euro + 1 person-month, per annum.	N/A	
	10. www-portal	6 months (course setup) + 2 months per annum thereafter (centralised course monitoring and support) + IT infrastructure (server, software tools etc.).		
Outreach	11. Outreach support	1 MEuro per annum	Per country 100,000	10

ARIES

ARIES iFAST

	Propert	Estimate of resources needed	Unit cost (Euro)	Number of units
Undergraduate -level training	1. 'e-learning' course, 'Introduction to Accelerator Science and T. Amorogy .	It months (course setup) + 5 months per annum thereafter (centralised course monitoring and support) + IT is a frastructure (server, software tools setc.).	N/A	
	2. Internships at 'local', or an international, accelerator laboratory.	15 2,000 Euro + 3 person months, per annum.	Intern month 1,500	100
Master's-level training	3. Bursary support to attend catablished international and national accelerator schools.	100,000 Euro + 2 person-months, per annum.	Bursary 2,000	50
	4. European Master's fellowship scheme.	200,000 Euro (year 1), 400,000 Euro (year 2 and per annum thereafter) + 2 person months per annum.	Fellowship 20,000 Euro	10
	5. Internships for project work in support of a thesis.	300,000 Euro + 3 person months, per annum.	Intern month 1,000	300
PhD-level training	6. Bursary support to attend established international and national accelerator schools.	100,000 Euro + 2 person-months, per annum.	Bursary 2,000	50
	7. European PhD fellowship scheme.	250,000 Euro (year 1), 500,000 Euro (year 2), 750,000 Euro (year 3 and per annum thereafter) + 2 person months per annum.	Fellowship 25,000	10
Structural support	9. Enhanced accelerator schools provision.	100,000 Euro + 1 person-month, per annum.	N/A	
	10. www-portal	6 months (course setup) + 2 months per annum thereafter (centralised course monitoring and support) + IT infrastructure (server, software tools etc.).		
Outreach	11. Outreach support	1 MEuro per annum	Per country 100,000	10

ARIES WP2: e-learning initiative ('MOOC')

Accelerator Research and Innovation for European Science and Society

- This Massive Open Online Course aims at raising awareness on Accelerator Science and Technology among University students.
- Complementary to JUAS, CAS and University courses.
- It is organised in 2 modules:
 - an introductory module
 4 topics of 1 hours each
 - an advanced module
 6 topics of 1 hours each

Also eg. Nordic MOOC

ARIES MOOC Status (21/4/21)

- Introductory module
 - ☐ Introduction (Philippe Lebrun):

Almost ready for recording

Electromagnetism (Vittorio Vaccaro):

Recording almost complete, some extra audio to be done

- Relativity (Elias Metral): Complete
- Applications (Angeles Faus-Golfe):

Planning for recording

- Advanced module
 - RF (Graeme Burt):

Final meeting before recording (23rd April)

Screenshots from the Relativity module

http://particle-accelerators.eu/mooc-preview/

ARIES WP2: training survey updated in 2020

Extended to 20 countries

2011 survey conclusions validated in 2020

iFAST starts 1/5/21: Innovation Fostering in Accelerator Science & Technology

- WP2 (PNB): Training, Communications & Outreach
- Task 2.3 (Nicolas Delerue et al):

'Challenge-based innovation' with particle accelerators

Task 2.4 (Tord Ekelof et al):

Industrial Training with Knowledge Transfer

internships at accelerator labs for early-career technicians and engineers at companies

Conclusions

- Coordination and improvement of training at a European level has received serious attention within accelerator community > 10 years
- Superb training provided via universities, labs, accelerator schools ...
- EU projects TIARA, ARIES, iFAST provide framework for:
 - understanding 'where we are'
 - identifying areas needing improvement
 - sharing of best practices + resources
 - promoting training opportunities within community
 - stimulating new initiatives (MOOC, CBI, internships)
- Areas of skills shortage (eg. engineering, RF technology ...)
- Much more could be done if resources were available

