ECSAC

LOŠINJ AUGUST 2010

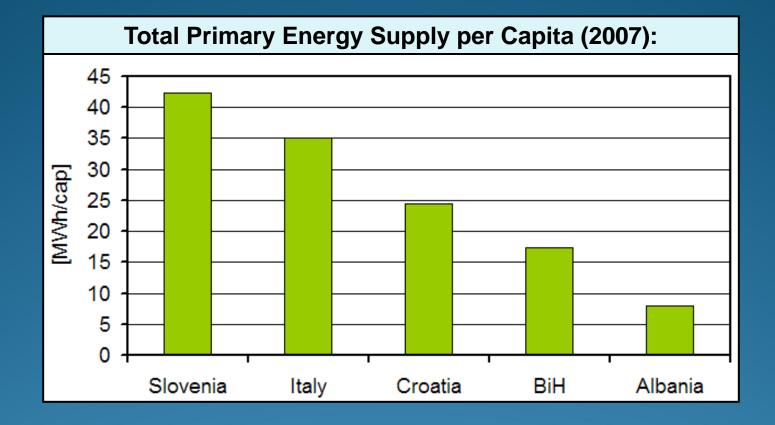
EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

SUSTAINABLE ENERGY CHALLENGES & OPPORTUNITIES IN THE ADRIATIC REGION

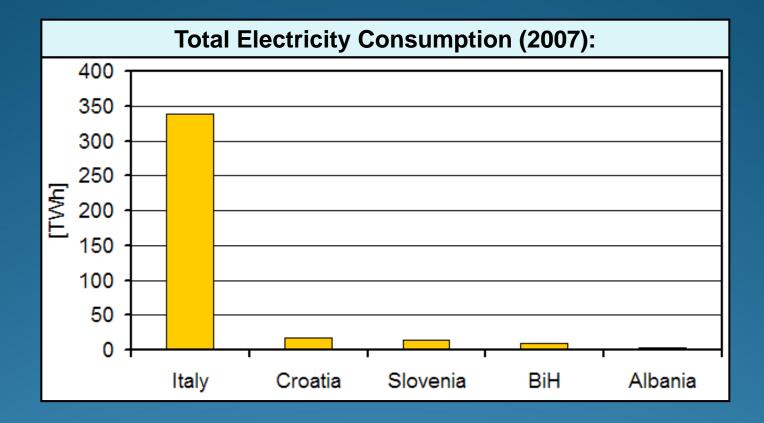
PROF BERNARD FRANKOVIĆ UNIVERSITY OF RIJEKA

LOŠINJ AUGUST 2010

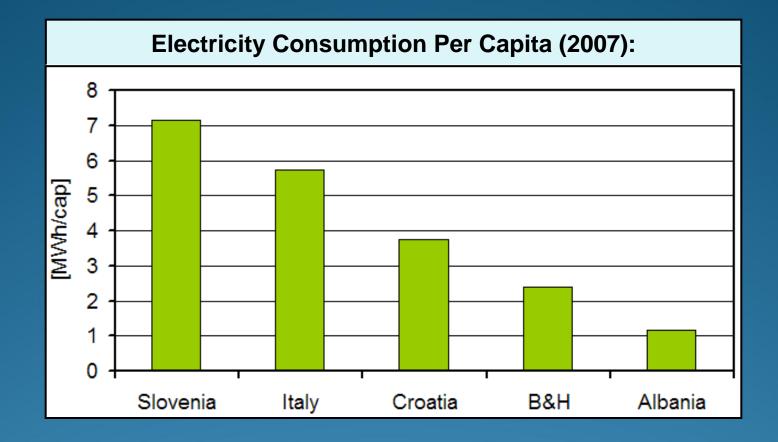
EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE


Countries of the Adriatic Region: Italy, Croatia, Slovenia, Bosnia&Herzegovina, Montenegro, Albania

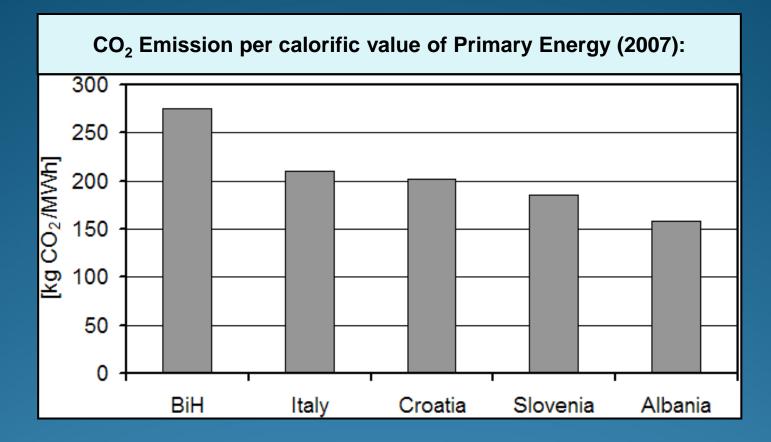
EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE


How much energy do we need?

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

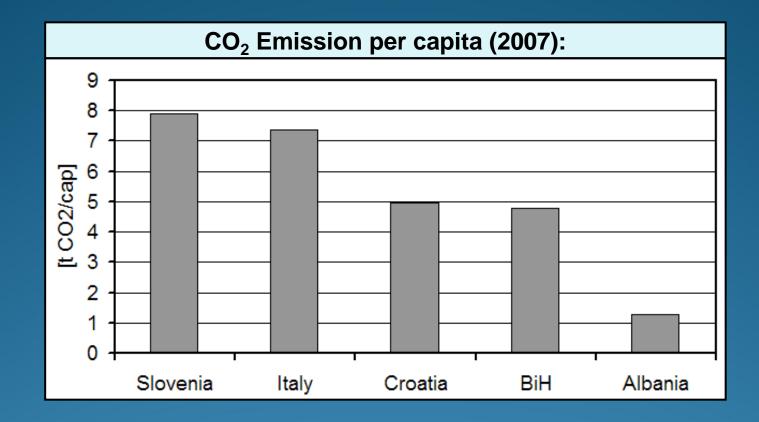

How much energy do we need?

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

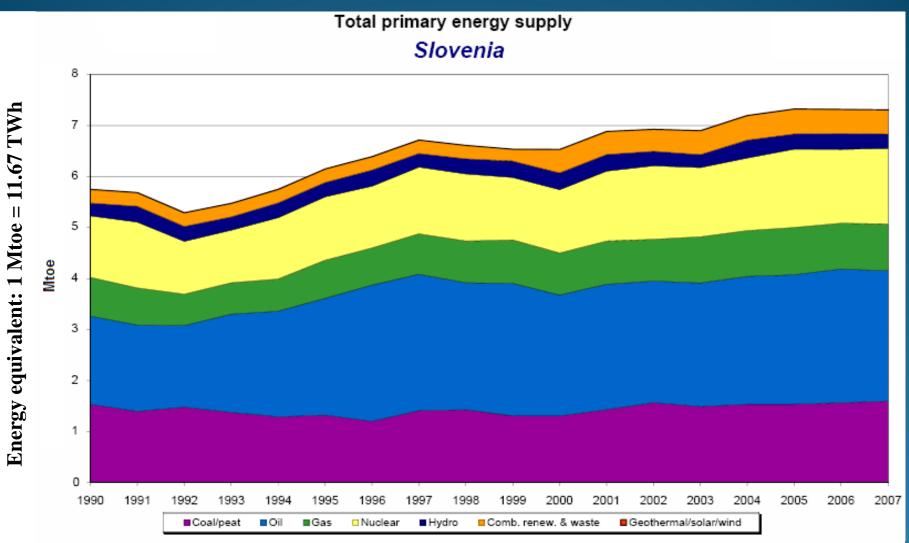

How much energy do we need?

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

How clean is the energy we use?

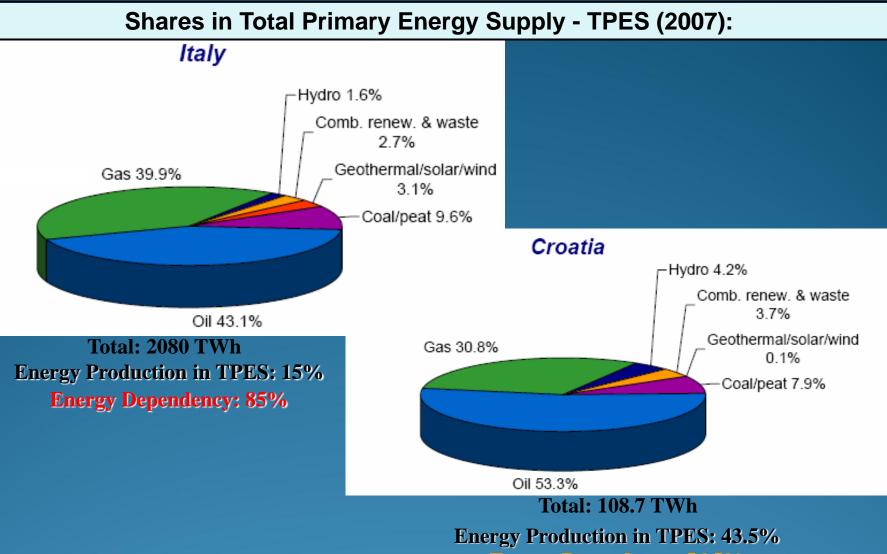


LOŠINJ AUGUST 2010


EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

How much CO₂ do we emit?

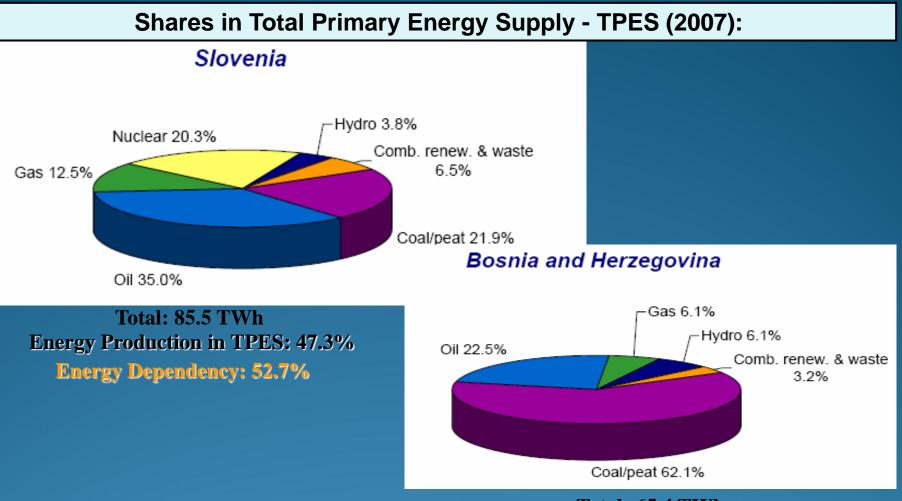
EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE



* Excluding electricity trade.

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

What are the energy sources that we consume?

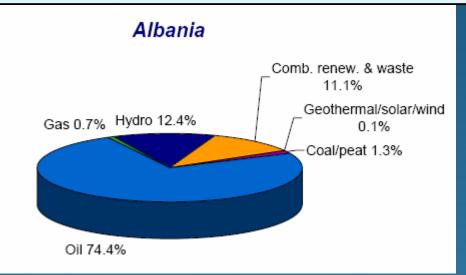


Energy Dependency: 56.5%

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

What are the energy sources that we consume?

Total: 65.4 TWh Energy Production in TPES: 70.3% Energy Dependency: 29.7%



ECSAC

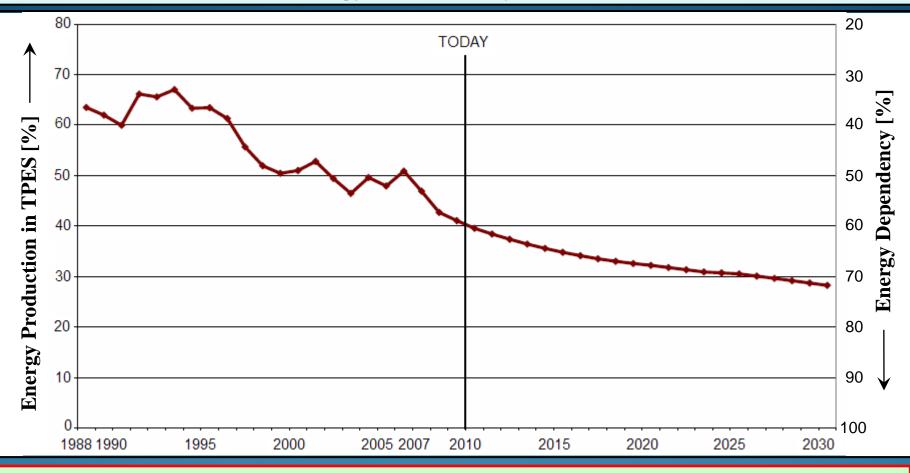
EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

What are the energy sources that we consume?

Shares in Total Primary Energy Supply - TPES (2007):

Total: 25.4 TWh Energy Production in TPES: 48.6% Energy Dependency: 51.4%

Energy Dependency of Countries in the Adriatic Region: 80.6%



LOŠINJ AUGUST 2010

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

What brings the Future?

Predicted Energy Dependency in Croatia till 2030

The energy dependency of Croatia will be about 70% in 2030.

LOŠINJ AUGUST 2010

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

How much are we dependent on others' energy sources?

	EU Member State	Gross Energy consumption ¹⁾	Net imports ²⁾	Energy Dependency ³⁾
1	Cyprus	2.6	3	100%
2	Malta	0.9	0.9	100%
3	Luxembourg	4.7	4.7	98.9%
4	Ireland	15.5	14.2	90.9%
5	Italy	186.1	164.6	86.8%
6	Portugal	25.3	21.6	83.1%
7	Spain	143.9	123.8	81.4%
8	Belgium	60.4	53.5	77.9%
9	Austria	34.1	24.9	72.9%
10	Greece	31.5	24.9	71.9%
11	Latvia	4.6	3.2	65.7%
12	Lithuania	8.4	5.5	64%
13	Slovakia	18.8	12	64%
14	Hungary	27.8	17.3	62.5%

	EU Member State	Gross Energy Consumption	Net imports	Energy Dependency
15	Germany	349	215.5	61.3%
	Croatia	9.3	5.3	56.5%
16	Finland	37.8	20.9	54.6%
17	Slovenia	7.3	3.8	52.1%
18	France	273.1	141.7	51.4%
19	Bulgaria	20.5	9.5	46.2%
20	Netherlands	80.5	37.2	38%
21	Sweden	50.8	19.8	37.4%
22	Estonia	5.4	1.9	33.5%
23	Romania	40.9	11.9	29.1%
24	Czech Republic	46.2	12.9	28%
25	United Kingdom	229.5	49.3	21.3%
26	Poland	98.3	19.6	19.9%
27	Denmark	20.9	-8.1	-36.8 ⁴⁾
	EU27	1825.2	1010.1	53.8%

1) Gross energy consumption in Million tonnes oil equivalent (Mtoe). Defined as primary production plus imports, less exports.

1 Mtoe = 11.67 TWh

2) Net imports means imports minus exports.

3) Imports divided by gross consumption.

4) Denmark is a net exporter of energy.

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

How long will last the World energy reserves?

Estimated date of exhaustion of fossil fuels and uranium at current consumption rates and dimensions of proved reserves

Natural Gas (in cubic meters)

Total world reserves Jan. 1st 2010: 171514266542404

World usage per second: 92653

Estimated date of exhaustion: 09:25 Sep 12, 2068

Coal (in metric tonnes)

Total world reserves Jan. 1st 2010: 834684384000

World usage per second: 203

Estimated date of exhaustion: 20:05 May 19, 2140

Oil (in barrels)

Total world reserves Jan. 1st 2010: 1175686472626

World usage per second: 986

Estimated date of exhaustion: 20:58 Oct 22, 2047


Uranium (in metric tonnes U-235)

Total world reserves Jan. 1st 2010: 17963

World usage per second: 0.0000042222017

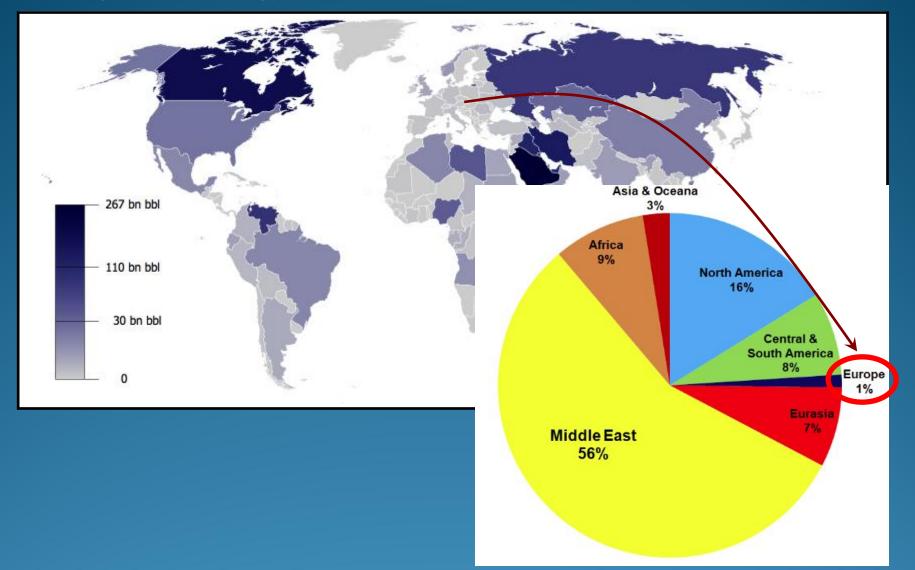
Estimated date of exhaustion: 23:12 Nov 28, 2144

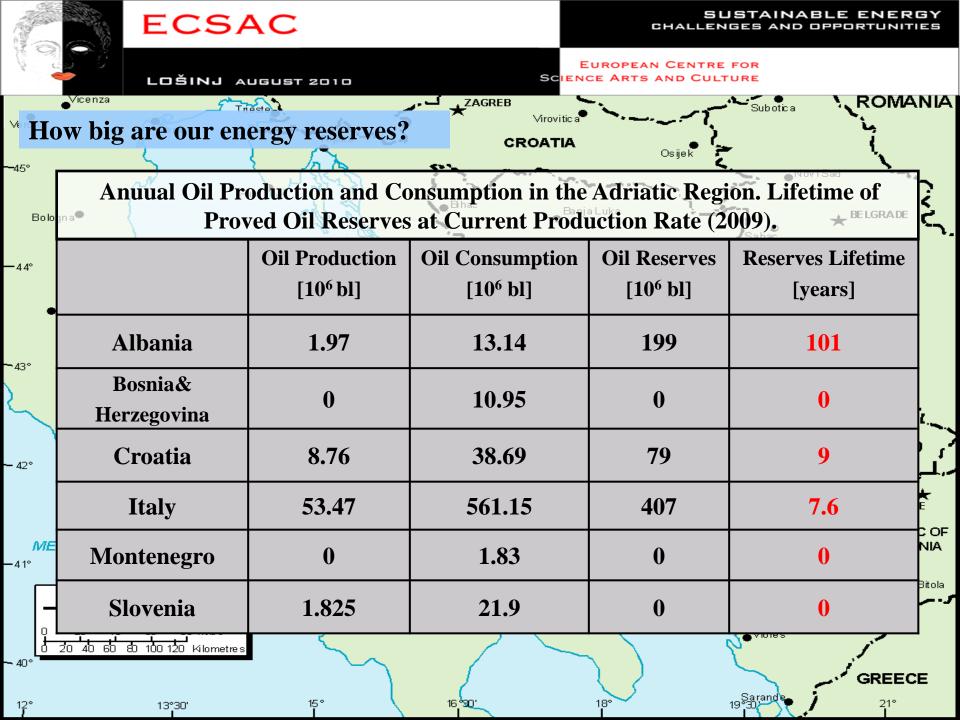
www.energy.eu

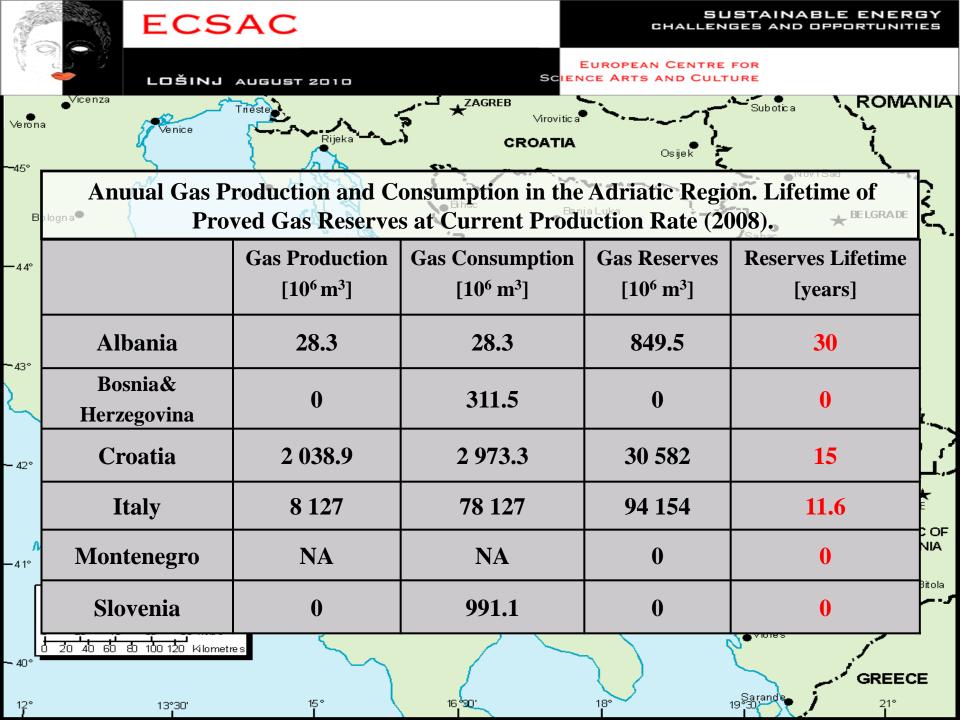
Build new nuclear powerplants?

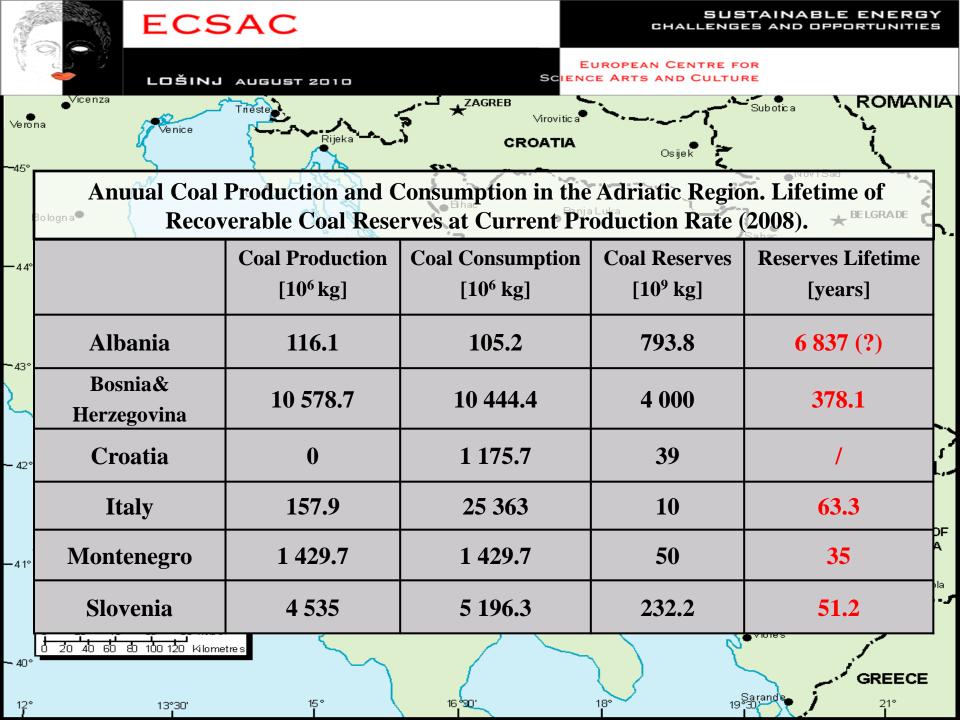
LOŠINJ AUGUST 2010

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

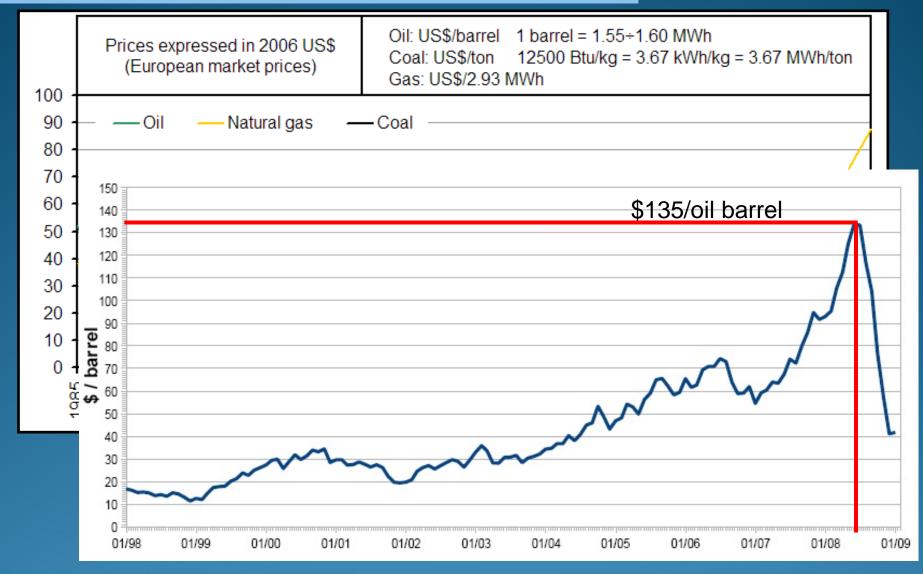

More nucle	ear to replace f	ossil fuels?	Number of reactors			
	Installed capacity [MW]	Electricity from nuclear [%]	Existing	Under Construction	Planned	Proposed
USA	101 120	19.7	104	1	11	19
France	63 473	76.2	59	1	1	1
Russia	21 750	16.9	31	9	7	37
Germany	20 340	28.3	17	0	0	0
China	8 600	2.2	11	20	37	120
India	3 780	2	17	6	23	15
South Africa	1 842	5.3	2	0	3	24
Italy	0	0	0	0	0	10
Slovenia	696	41.7	1/2	0	0	1
Croatia	696	8	1/2	0	0	1
Albania, B&H, MNE	0	0	0	0	0	0
World	371 500	14	436	58	139	325




EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE


LOŠINJ AUGUST 2010

How big are our energy reserves? - oil



LOŠINJ AUGUST 2010

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

How much does cost the energy we are buying?

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Sustainable energy?

energy production, its supply and exploitation for meeting the needs of the present without compromising the ability of future generations

to meet their own energy needs.

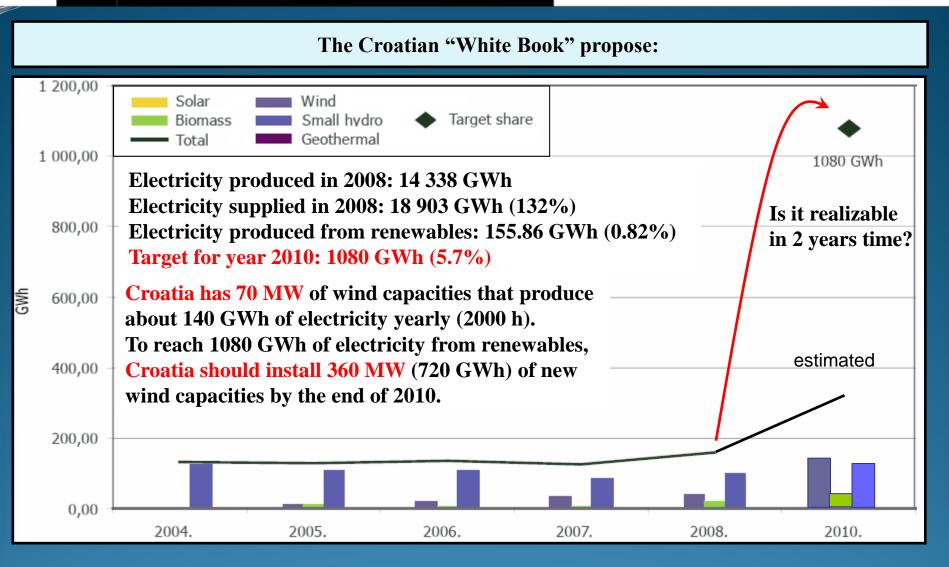
Sustainable energy sources have the ability to continue providing energy replenishing themselves within a human lifetime and without causing damages to humans and to the environment.

Renewable energy?

energy that is naturally replenished and which comes from natural sources such as sunlight, wind, hydro, waves & tides, biomass and geothermal heat.

Sustainable energy includes:

- 1. renewable energy sources
- 2. energy efficiency
- 3. energy conservation
- 4. sustainable transport


EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

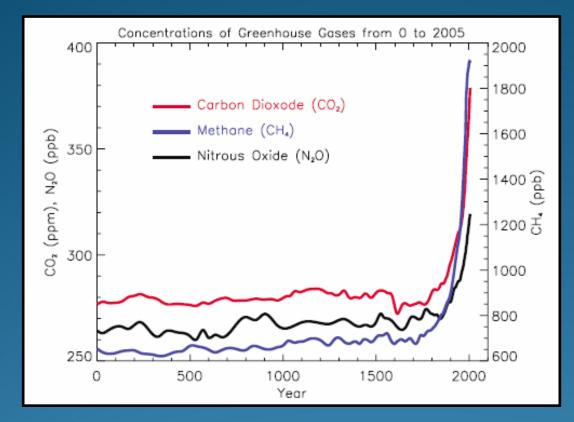
Renewable energy in final energy consumption (DIRECTIVE 2009/28/EC): < 1% < 3% **Renewables in electricity generation:** < 5% < 10% Eolico 21,1% < 20% < 30% Solare 1,3% Idroelettrico > 30% 59,5% Biomasse 17,1% Geotermia

1,0%

LOŠINJ AUGUST 2010

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE


Emission of greenhouse gases (CO₂, CH₄, N₂0, HFCs, PFCs, SF₆) in the EU:

Figures are in Megaton (Mt CO2-eq).							
						KYOTO TARGET	
EU MEMBER STATE	2003	2004	2005	2006	2007	2012	% UNDER KYOTO TARGET
LATVIA	10,7	10,7	10,9	11,7	12,1	23,3	48,07 %
ESTONIA	21,2	21,2	20,7	19,2	22,0	40	45,00 %
LITHUANIA	16,7	21,1	22,6	22,8	24,7	44,1	43,99 %
ROMANIA	NO DATA	160,1	153,7	153,9	152,3	259,9	41,40 %
BULGARIA	NO DATA	68,9	69,8	71,5	75,7	127,3	40,53 %
HUNGARY	83,3	79,5	80,5	78,8	75,9	114,9	33,94 %
SLOVAKIA	51,1	49,5	48,7	49,0	47,0	67,2	30,08 %
POLAND	382,5	396,7	399	399,3	398,9	551,7	27,70 %
CZECH REPUBLIC	147,5	147,1	145,6	149,1	150,8	180,6	16,50 %
SWEDEN	70,9	69,7	67	66,9	65,4	75,2	13,03 %
UNITED KINGDOM	658	660,4	657,4	647,9	636,7	678,3	6,13 %
FRANCE	560,9	556,1	553,4	541,7	531,1	564	5,83 %
GREECE	137,2	137,6	139,2	128,1	131,9	139,6	5,52 %
BELGIUM	147,6	147,6	143,8	136,6	131,3	135,9	3,38 %
GERMANY	1024,4	1025	1001,5	980,0	956,1	972,9	1,73 %
							% OVER KYOTO TARGET
NETHERLANDS	215,4	218,4	212,1	208,5	207,5	200,4	-3,54 %
PORTUGAL	83,7	84,6	85,5	84,7	81,8	77,4	-5,68 %
IRELAND	68,4	68,6	69,9	69,7	69,2	63	-9,84 %
FINLAND	85,4	81,2	69,3	79,9	78,3	71,1	-10,13 %
SLOVENIA	19,7	19,9	20,3	20,5	20,7	18,6	-11,29 %
ITALY	577,3	580,5	582,2	563,0	552,8	485,7	-13,82 %
DENMARK	73,6	68,2	63,9	71,0	66,6	54,8	-21,53 %
AUSTRIA	92,5	91,2	93,3	91,6	88,0	68,7	-28,09 %
SPAIN	407,4	425,2	440,6	433,0	442,3	331,6	-33,38 %
LUXEMBOURG	11,3	12,8	12,7	13,3	12,9	9,1	-41,78 %
MALTA	3,1	3,2	3,4	2,9	3,0	NO TARGET	
CYPRUS	9,2	9,9	9,9	9,9	10,1	NO TARGET	
CROATIA					32,385	29,8 (33,1) ¹	- 8,67% (2,16%)

¹ Decision 7/CP.12: +3,5 Mt CO2-eq to be added to base year emissions for Croatia (Conference of the Parties, Nairobi, 2006), not yet approved by Kyoto protocol commission

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Concentration of greenhouse gases (CO₂, CH₄, N₂0) over the last 2000 years:

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Renewable energy projects in Croatia:

Project Title	echnology Capacity M	W Status	
Gracac, Croatia Wind Farm	Vind	under construction	
The Energy strategy Conventional power		e:	
^{or} 1 coal pow	as power plant 400 er plant 600	0 MW (2013) 0 MW (2015)	MINISTARSTVO GOSPODARSTVA, RADA I PODUZETNIŠTVA PROGRAM UJEDINJENIH NARODA ZA RAZVITAK (UNDP)
a few hydro	ower plant 1 00 o power plants 30	· · · · ·	PRILAGODBA I NADOGRADNJA STRATEGIJE
Renewable energy wind	owerplants: 1 200 MW	(2020)	ENERGETSKOG RAZVOJA REPUBLIKE HRVATSKE
Pr biomass	140 MW	(2020) (2020)	NACRT ZELENE KNJIGE
RL small hydro se solar	45 MW	(2020)	
sil municipal v Vr geotherma		(2020) (2020)	LISTOPAD 2008.
tol	· • • •		Rudine

Wind power dominating

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Renewable energy projects in Slovenia:

Project Title	Technology	Capacity MW	Status			
Lendava, Sloveia Biogas	Biogas	7.2	planned			
Sava River Hydro Slovenia	Hydroelectric	42.5	planned			
Slavenian Biodiesel Plant	Biodiesel		planned			
Ruse, Slovenia PV silicon plant	Solar PV		construction			
Mavcice Solar Plant	Solar PV	.0357	operating			
Slovenia Wind Farm Project	Wind	28 MW	Planned			
Slovenia Pumped Hydro	Hydroelectric	178	Planned			
Blanca Hydro	Hydroelectric	42.5 MW	Construction			
Mokrice	Hydroelectric	31.5	Planned			
Volovja Persolja	Wind	60.75	Planned			
Idrija	Hydroelectric	0.334	Operating		No Parto	Carl and the second
Ilirska Bistrica	Hydroelectric	0.055	Operating		Share &	No. 180
Javornik	Hydroelectric	1.26	Operating	Ravne		Lendava
Jelenk	Hydroelectric	0.07	Operating		Rúše	The second
Knezke Ravne	Hydroelectric	0.91	Operating	Y	5	
total		390		Mavčiče Jelenk	5	Station -
Hydro power	dominating		Medvode	Maveree		1
	<u> </u>		C Idrija M	lokrice		
					in All Parts	の一般はたい
			A Startes	81. Star 189		
				ska Bistrica		No. 14
				ska bistrica	A DECK STREET	1.20

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Renewable energy projects in Albania:

ECSAC

Project Title	Technology	Capacity MW	Status
Ashta Hydro	Hydroelectric	48	announced
Fuzuli Hydropower Plant	Hydroelectric	25	
Northern Albania Energy Park	Wind	374	planned
Devol River Hydropower	Hydroelectric	340	planned
Marseglia Group Wind and Biofuels	Wind	140 MW biomass	planned
Vlora Wind Farm	Wind	234 MW Wind 500	planned
Italgest Kryevidhi, Albania Wind Farm	Wind	150	Proposed
Devoll River (Albania) Hydro	Hydroelectric	300	planned
Kalivaci	Hydroelectric	120	Planned
Bushati	Hydroelectric	84	Planned
Banja Kesh	Hydroelectric	60	Planned
Vukel	Hydroelectric	0.05	Operating
Vau I Deja	Hydroelectric	258	Operating
Ulza	Hydroelectric	25.6	Operating
Theth	Hydroelectric	0.075	Operating
Hydro and wi	nd power de	ominating	

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Renewable energy projects in Bosnia and Herzegovina:

Project Title	Technology	Capacity MW	Status
Sutjeska Hydro	Hydroelectric	35	planned
Paunci Hydro	Hydroelectric	36.6	planned
Foca Hydro	Hydroelectric	51.7	planned
Buk Bijela Hydro	Hydroelectric	114.6	planned
Bosna River 25 Run of River Hydro Plants	Hydroelectric	350	under construction
Capljina Pumped-Storage	Hydroelectric	430	under construction
Tomislavgrad Wind Park	Wind	44	funded
EFT Neretva River Hydro	Hydroelectric	35	planned
Drina River EBH Hydro	Hydroelectric		planned
Vrbas River Hydro	Hydroelectric		planned
Brcko, Bosnia Ethanol Plant	Ethanol		planned
Pale, Bosnia Hydro	Hydroelectric	50	planned
Pecina	Hydroelectric	0.6	Planned
Pogledala	Hydroelectric	0.378	Planned
Prsljanica	Hydroelectric	0.24	Planned

Hydro power dominating

ECSAC

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Renewable energy projects in Montenegro:

Project Title	Technology	Capacity MW	Status
Mozura's Bar and Ulcinj Wind Farms	Wind	46	financed
Krnovo Wind Power Concession	Wind	50	planned
Moraca River Hydro	Hydroelectric	238	planned
Moraca River Hydro	Hydroelectric	238	planned
Zhur of Prizren Hydro	Hydroelectric		planned
Bajina Basta Hydro PP	Hydroelectric	54 additional to 422MW	under construction
Brodarevo 1 and 2 hydroelectric power projects	Hydroelectric	75	announced
Phaunos Timber Fund Serbian Pellet Mfg.	Wood Pellet Manufacturing		planned
Piva Montenegro Hydro	Hydroelectric		planned
Serbia, Srpska Join on Hydro Plant	Hydroelectric		planned
Eastern Serbian Hydro	Hydroelectric		planned
Piva Hydro in Montenegro	Hydroelectric	342	planned
Zrenjanin, Serbia Bioethanol Plant	Ethanol		planned
Indija Wind turbine production	Wind		planned
Indjija Wind Project (Phase II)	Wind	25	Planned

Hydro and wind power dominating

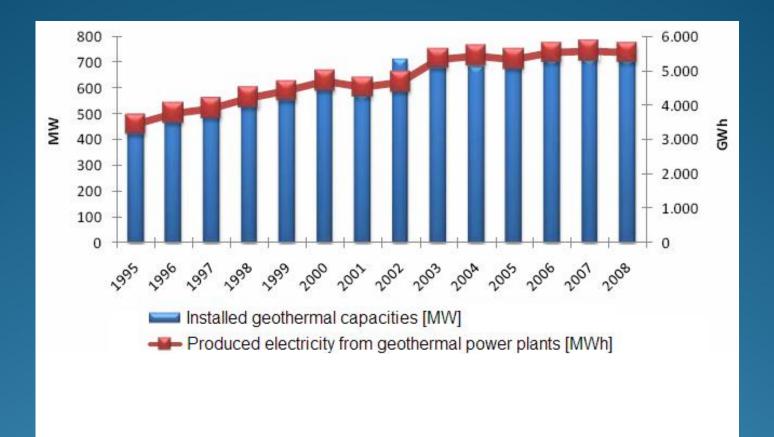
EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Renewable energy targets in Italy:

	1997		2002		2006		2008/2012	
Source/technology	MWe	TWh	MWe	TWh	MWe	TWh	MWe	TWh
Hydro > 10 MW	13942	33.47	14300	34.32	14500	34.8	15000	36
Hydro = 10 MW	2187	8.12	2.400	8.88	2600	9.62	3000	11.1
Geothermal	559	3.90	650	4.78	700	5.14	800	5.9
Wind	119	0.12	700	1.4	1400	2.8	2500	5
Solar	16	0.01	25	0.03	100	0.11	300	0.3
Biomass and biogas	192	0.57	380	2.28	800	4.80	2300	13.8
Waste	89	0.25	350	1.75	500	2.50	800	4.0
Total	17104	46.44	18805	53.44	20600	59.77	24.700	76.1
					Evpoo	tod to	ha achiov	up d

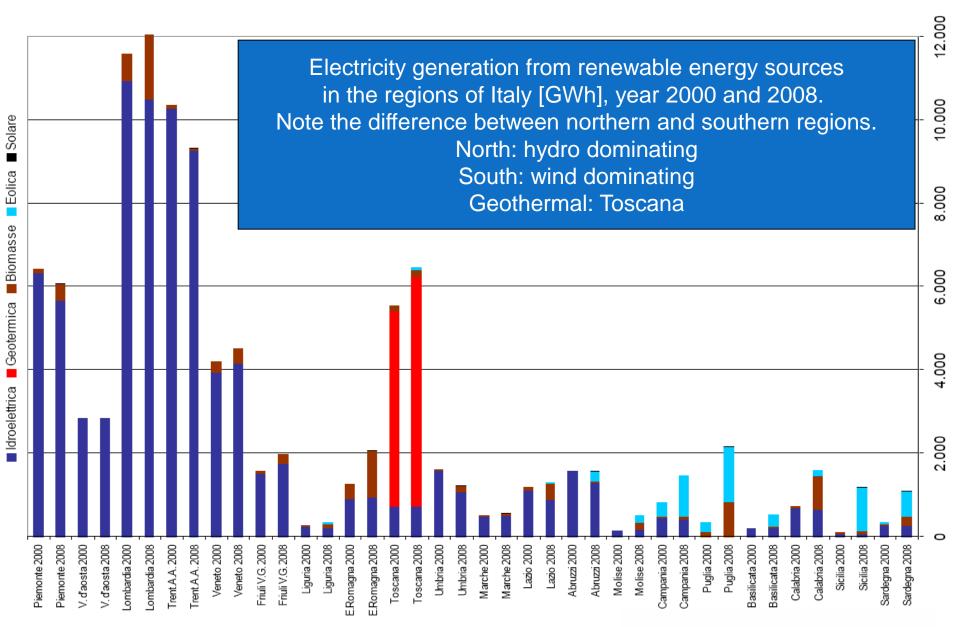
Expected to be achieved at end of 2010

Estimated installed wind capacity by end of 2010: 6 300 MW Target for year 2020: 12 000 MW (reachable in 2015 if current growth rate continues) Estimated wind capacity by 2020: 16 200 MW

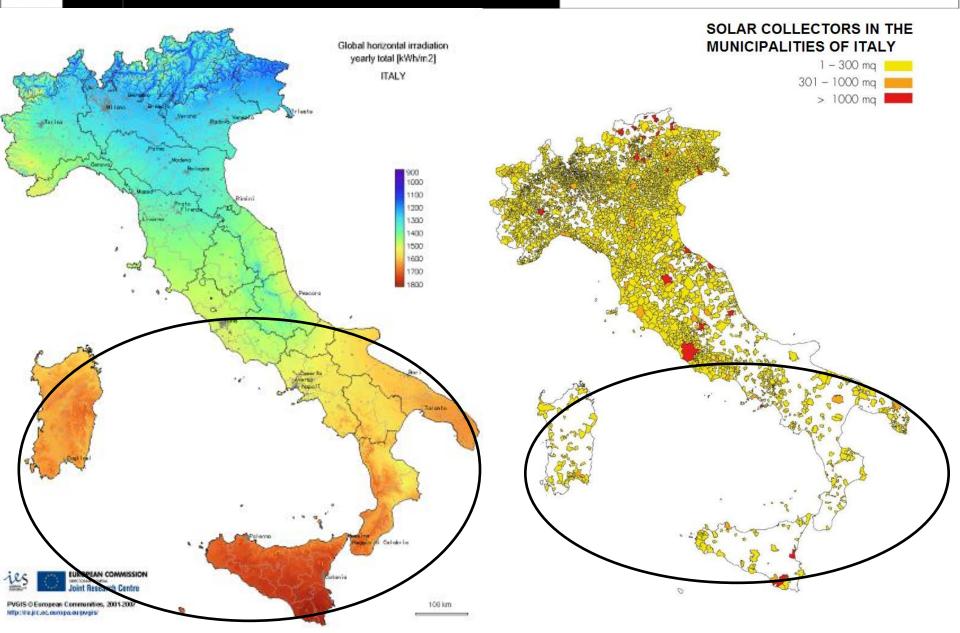

Estimated installed solar PV capacity by end of 2010: 2000 MW (Project "Tetti fotovoltaici", existing feed-in tariff for 20 years of PV system operation, CRO 12)

Among EU countries, Italy is third-placed for installed wind and solar capacities, after Germany and Spain

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

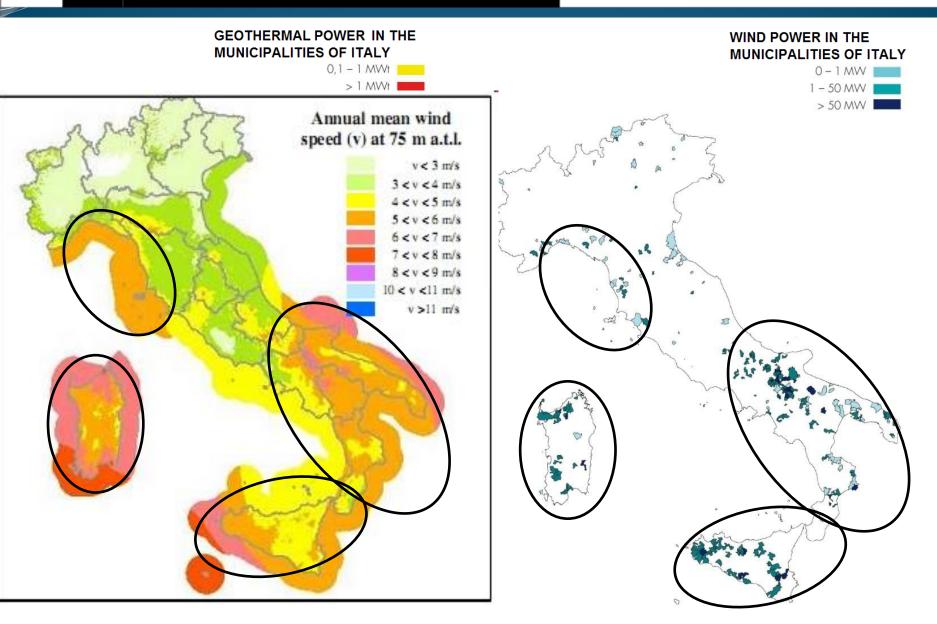

Geothermal power:

ECSAC


EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

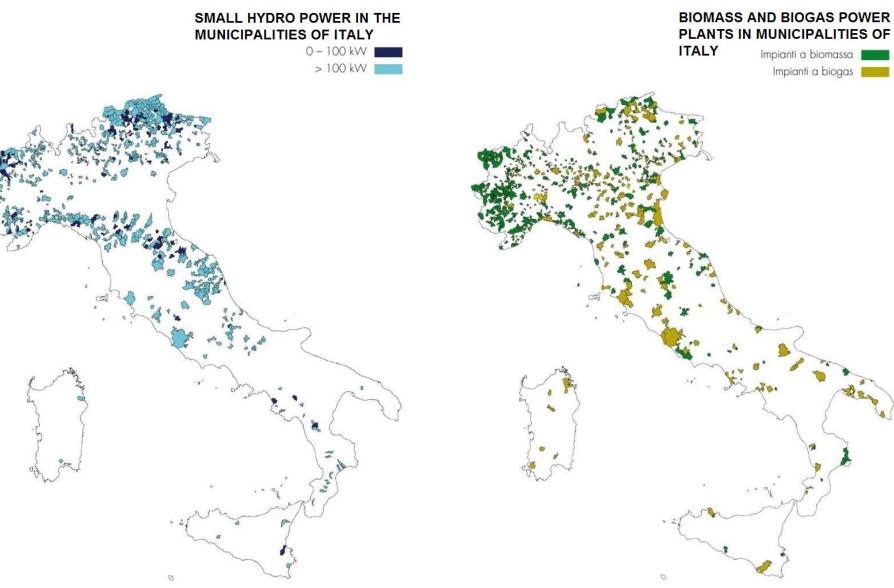
ECSAC

LOŠINJ AUGUST 2010


EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

ECSAC

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE


LOŠINJ AUGUST 2010

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Nuclear power debate in Italy:

Enrico Fermi and Caorso closed in 1990 after the Nuclear power referendum in 1987 fearing from new Chernobyl disasters. Garigliano closed in 1982. Latina closed in 1987. Montalto cancelled in 1988. Total nuclear power capacity mothballed: 3 500 MW

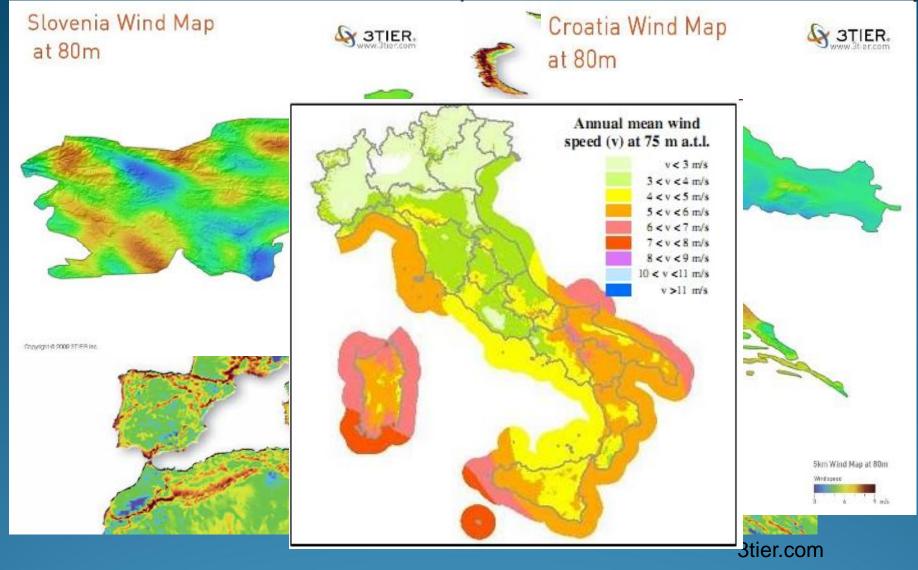
A €50 billion mistake?

10% of electricity is imported from France (59 NPP) 10 new reactors are proposed which will produce 25% of electricity by 2030. Agreements are being signed between Italy and France for expertises and feasibility studies of new EPR (European Pressurized Reactor, Areva) reactors.

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

How to show nuclear power to the general public?

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE


Wind energy

LOŠINJ AUGUST 2010

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

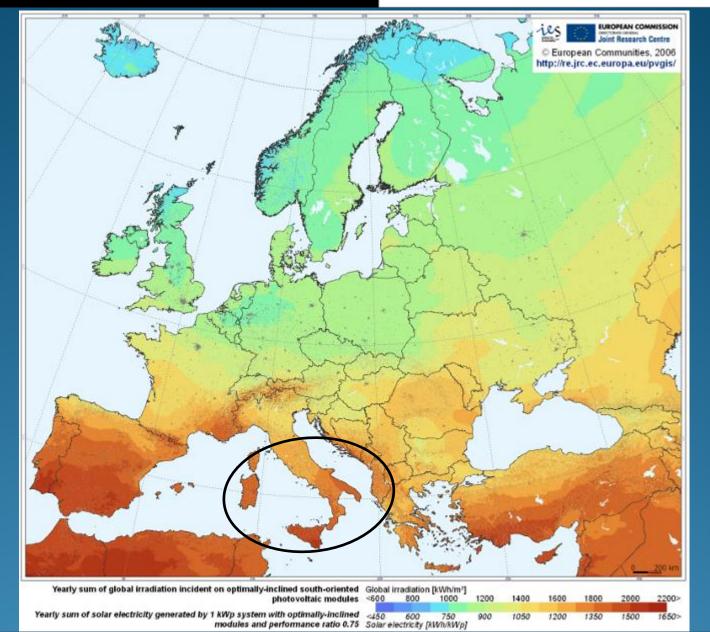
Wind energy potential in the Adriatic region:

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Worldwide installed wind power capacities produce 2% of the global electricity. The installed capacity doubles every three years and by the end of the 2010 the worldwide installed wind capacity will be about 200 GW. 80% of the total global capacity is installed in the EU and USA. The installed wind capacity in China has doubled each year since 2005.

160,000				450							
160,000	Installed wind conspities by country in MW										
140,000	Installed wind capacities by country in MW										
120,000		2005	2006	2007	2008	2009					
100,000	USA	9 149	11 603	16 819	25 170	35 159					
≥ 80,000	Germany	18 428	20 622	22 247	23 903	25 777					
60,000	China	1 266	2 599	5 912	12 210	25 104					
40,000	Spain	10 028	11 630	15 145	16 740	19 149					
20,000	India	4 430	6 270	7 850	9 587	10 925					
0 1	Italy	1 718	2 123	2 726	3 537	4 850					
_	France	779	1 589	2 477	3 426	4 410					
	Croatia	6	6	17	59	69					
	EU	40 722	48 122	56 614	65 255	74 767					

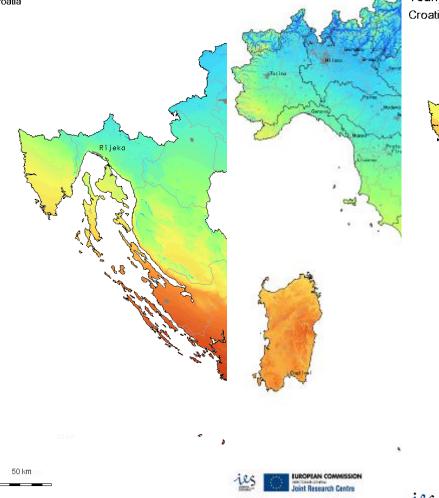
140 000 employees in the wind sector \leftarrow


EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

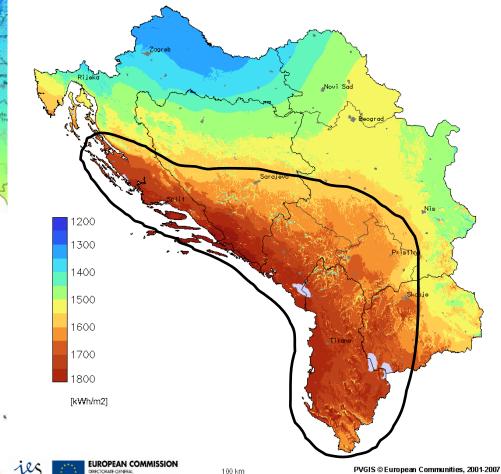
Solar energy

LOŠINJ AUGUST 2010

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE


http://re.jrc.ec.europa.eu/pvgis/

LOŠINJ AUGUST 2010


EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Solar energy potential in the Adriatic region:

Yearly sum of global irradiation on horizontal plane Croatia

Yearly sum of global irradiation received by optimally-inclined PV modules Croatia, Bosnia & Herzegovina, Serbia & Montenegro, Albania, and FYR Macedonia

PV-GIS (c) European Communities, 2002-2005 http://re.jrc.cec.eu.int/pvgis/pv/

PVGIS © European Communities, 2001-2009 http://ejic.ec.europa.eu.pvgis/

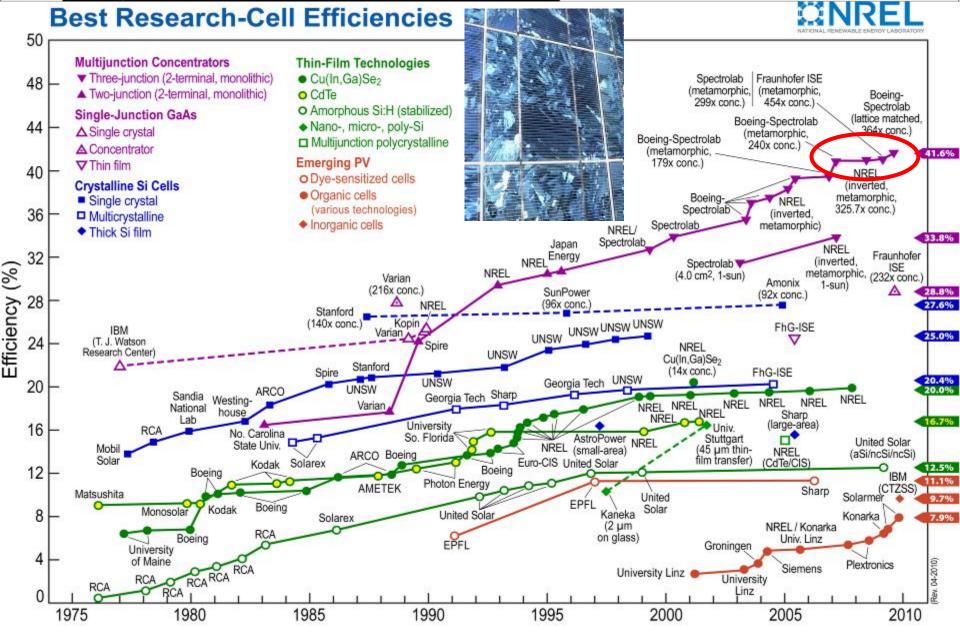
Joint Research Centre

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Solar energy conversion systems:

ECSAC

- 1. small-scale solar heating and cooling systems
- 2. large-scale PV and concentrating solar thermal for electricity production



SUSTAINABLE ENERGY CHALLENGES AND OPPORTUNITIES

LOŠINJ AUGUST 2010

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Installed on-grid PV capacities by country in MW

	2006	2007	2008	2009
Germany	3 063	3 846	6 019	9 830
Spain	118	733	3 421	3 520
Japan	1 500	1 700	2 000	2 600
USA	300	500	700	1 200
Italy	58	120	458	1 032
Czech Rep.	1	4	55	466
South Korea	50	100	400	400
Croatia		0.05	0.0773	0.4(?)
World	5 100	7 600	13 500	21 000

Installed PV solar capacity = 10% of installed wind capacity

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Solar thermal energy:

20 000 GWh ($28.5 \cdot 10^6 \text{ m}^2$) of energy supplied from solar collectors in the EU: Germany: 7 920 GWh Italy: 1 130 GWh Spain: 1 000 GWh

Croatia: 51 GWh

Solar thermal energy supplied per 1000 inhabitants in the EU:

Cyper: 590 MWh (843 m²) Austria: 330 MWh (471 m²) Greece: 242 MWh (345.7 m²) Germany: 96.4 MWh (137.7 m²)

Italy: 18.8 MWh (26.9 m²) Croatia: 11.6 MWh (16.6 m²)

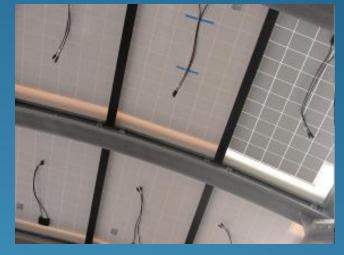
LOŠINJ AUGUST 2010

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Solar energy in urban environment:

UPC Arena, Graz 1400 m² of solar collectors Thermal energy: 520 MWh/a Annual CO_2 mitigation: 93.6 t CO_2 1st commercial PV system in Rijeka 44 PV panels Max output: 9,9 kWp Area: 75 m² Annual electricity production: 9 MWh Annual CO₂ mitigation: 2 tCO₂

LOŠINJ AUGUST 2010


EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Solar energy in urban environment:

PV system on Rijeka's motorway 1155 PV panels Max output: 220 kWp Area: 2260 m² Annual electricity production: 217 MWh Annual CO_2 mitigation: 43.4 t CO_2

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Solar energy in urban environment:

Toyota Solar Prius

Max output: 240 Wp

Enough for an additional drive of 15 km

Solartaxi – 6 m^2 of PV panels

Max velocity: 90 km/h

Consumption: 8 kWh/100 km

Battery power: 7,2 kWp

Car mass: 500 kg; Mass of PV trailer: 250 kg

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

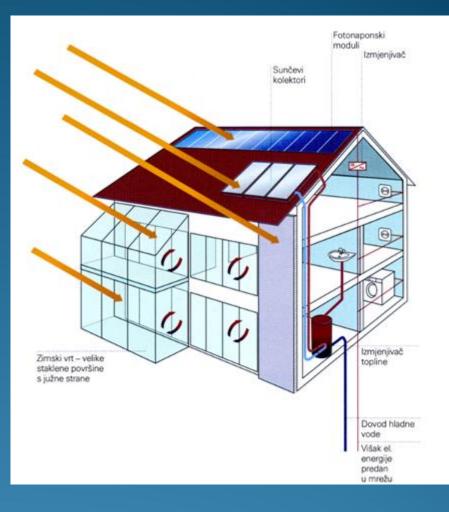
Energy efficiency – Sustainable housing

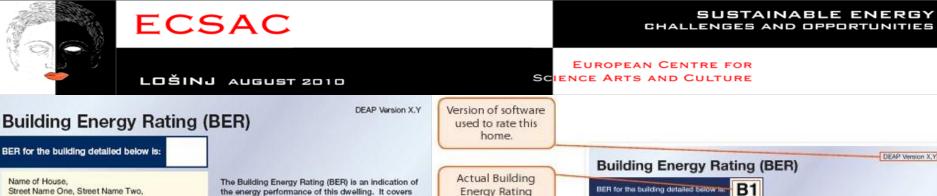
Advanced building design and solutions

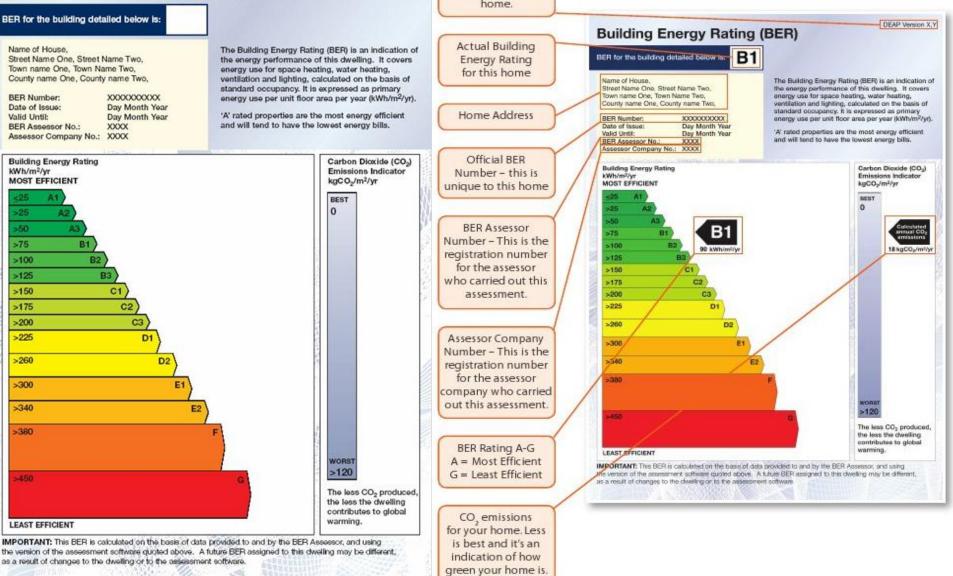
South-oriented windows with low heat losses

Well insulated and air-tight building envelope

No thermal bridges in building envelope


Trombe walls, massive walls and floor for accumulation of solar energy


High-efficient HVAC components and household appliances (A++, A+ class)


High-quality indoor comfort with low energy consumption

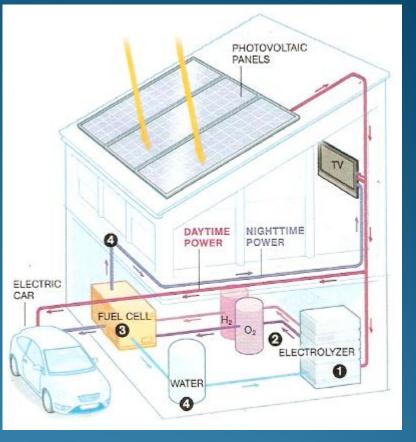
Low environment impact and building CO₂ emissions

Low energy bills. Renewable energy systems for space and DHW heating

SUSTAINABLE ENERGY CHALLENGES AND OPPORTUNITIES

LOŠINJ AUGUST 2010

ECSAC

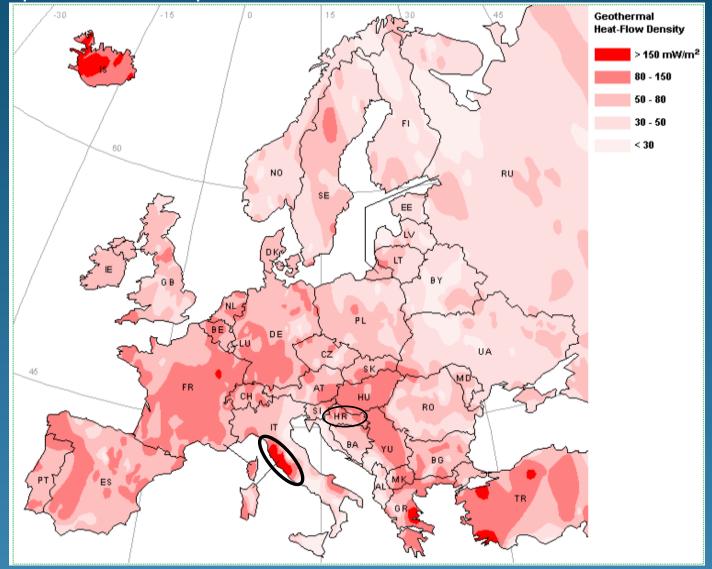

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Sustainable (solar) housing of the next generation

Small home power plant

- 1. Excess electricity from PV cells goes to the electrolyzer
 - 2. Electricity splits water into oxygen and hydrogen
 - 3. During night hours, the stored hydrogen and oxygen are recombined in a fuel cell, generating electricity
 - 4. Excess electricity or hydrogen could be used to fuel a car

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE


Geothermal energy

LOŠINJ AUGUST 2010

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Geothermal potential in Europe:

LOŠINJ AUGUST 2010

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Geothermal energy for electricity generation:

Installed capacity in EU: 720 MWe (5 800 GWh of electricity in 2008) Installed capacity in Italy: 670 MWe or 93% of EU capacity (5 520 GWh of electricity in 2008) Target for year 2010: 1000 MWe Estimated installed capacity at end of 2010: 934 MWe

Geothermal energy for heating energy generation (medium-temperature sytems): Installed capacity in EU: 2 560 MWth (8 040 GWh of heating energy in 2008) Hungary: 700 MWth (2 210 GWh) Italy: 500 MWth (2 060 GWh) France: 312 MWth (1 330 GWh) Croatia: 113.9 MWth (155 GWh)

Geothermal energy for heating energy generation (low-temperature systems): Installed capacity in EU: 9 00<u>0 MWth (2008)</u>

Sweden: 2 910 MWth

Germany: 1 650 MWth France: 1 370 MWth

Target for year 2010 (cumulative medium and low-temperature systems): 5 000 MWth Estimated installed capacity at end of 2010: 14 560 MWth

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

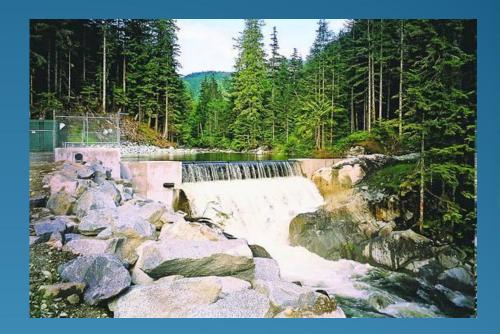
Small hydro

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

2.41

Map of rivers and lakes in Europe:

Groundwater Average rate of recharge HIGH MEDIUM LOW



EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Installed small hydropower (<10 MW) in EU: 12 620 MW (43 560 GWh of electricity, 2008) Italy: 2 500 MW (8 400 GWh) France: 2 000 MW (7 100 GWh) Spain: 1 750 MW (6 300 GWh) Germany: 1 500 MW (6 250 GWh)

. . .

Slovenia: 77 MW (270 MW) Croatia: 27 MW (100 GWh)

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Waste

ECSAC

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Municipal solid waste in primary energy supply: 80 TWh (2008) Germany: 14.4 TWh France: 13.6 TWh Denmark: 11.2 TWh

Municipal solid waste in primary energy supply per 1000 inhabitants: Denmark: 2040 MWh Sweden: 810 MWh

Municipal solid waste in electricity generation: 15.2 TWh (2008) Germany: 4.5 TWh France: 1.9 TWh Italy: 1.6 TWh

ECSAC

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Cost of electricity generation by year 2016:

	Capacity Factor (%)	U.S. Average Levelized Costs (2008 \$/megawatthour) for Plants Entering Service in 2016					
Plant Type		Levelized Capital Cost	Fixed O&M	Variable O&M (including fuel)	Transmission Investment	Total System Levelized Cost	
Conventional Coal	85	69.2	3.8	23.9	3.6	100.4	
Advanced Coal	85	81.2	5.3	20.4	3.6	110.5	
Advanced Coal with CCS	85	92.6	6.3	26.4	3.9	129.3	
Natural Gas-fired							
Conventional Combined Cycle	87	22.9	1.7	54.9	3.6	83.1	
Advanced Combined Cycle	87	22.4	1.6	51.7	3.6	79.3	
Advanced CC with CCS	87	43.8	2.7	63.0	3.8	113.3	
Conventional Combustion Turbine	30	41.1	4.7	82.9	10.8	139.5	
Advanced Combustion Turbine	30	38.5	4.1	70.0	10.8	123.5	
Advanced Nuclear	90	94.9	11.7	9.4	3.0	119.0	
Wind	34.4	130.5	10.4	0.0	8.4	149.3	
Wind - Offshore	39.3	159.9	23.8	0.0	7.4	191.1	
Solar PV	21.7	376.8	6.4	0.0	13.0	396.1	
Solar Thermal	31.2	224.4	21.8	0.0	10.4	256.6	
Geothermal	90	88.0	22.9	0.0	4.8	115.7	
Biomass	83	73.3	9.1	24.9	3.8	111.0	
Hydro	51.4	103.7	3.5	7.1	5.7	119.9	

Estimated Levelized Cost of New Generation Resources, 2016.

CCS = Carbon Capture and Storage

Source: Energy Information Administration, Annual Energy Outlook 2010, December 2009, DOE/EIA-0383(2009)

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Sustainable energy for sustainable transport Biofuels

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Bio-fuels for transport in the EU:

Consumption of bio-fuels in transport: 10.5 Mtoe (2008) or 3.4% of the total energy supply Target for year 2010: 5.75% of the total energy supply in transport

Bio-fuels:

Biodiesel 78.2%

Bioethanol 17.7% Other 4.1%

Bio-fuels producers:

Germany 31% France 23%

-ue

Oil palm tree

Peanut

Sugarcane

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

LOŠINJ AUGUST 2010

Sustainable transport – vehicles of the next generation

Hybrid electric vehicle:Toyota Prius Emissions: 90 g/km (SULEV)

Plug-in HEV (rechargeable batteries to plug on external powersource): Chevrolet Volt

Is it an environment friendly solution? How much CO₂ produces the electricity used to recharge the batteries?

LPG HEV vehicle: Hyundai Elantra LPI Hybrid LPG + Li-Poly batteries Consumption: 5.6 lit/100 km Emissions: 99 g/km (SULEV)

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Sustainable transport – vehicles of the next generation

Hydrogen fuel cell vehicle: Honda FCX Clarity Production cost: \$130 000 per vehicle Specifications: 130 hp KERS is represented by 288 V Li-ion battery Range: 450 km Consumption: 0.86 kg H₂/100 km Hydrogen cost: \$5-\$10 per kg H₂ Hydrogen is produced from natural gas Not yet available for purchase but for leasing at \$600/month for 3 years Partial zero-emissions vehicle (PZEV) Zero-emissions vehicle (ZEV)

ZEV (refers to tailpipe emissions): Bicycles Electric vehicles* Hydrogen vehicles Solar vehicles

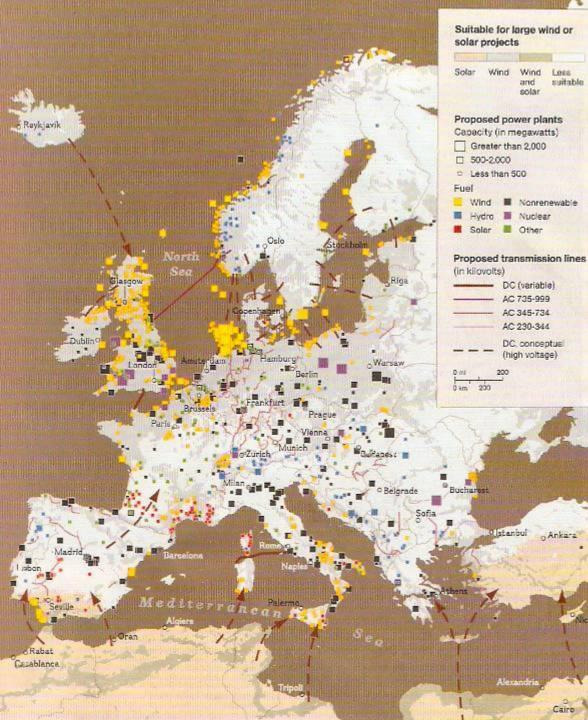
*Although electric vehicles are considered as ZEV-vehicles, they only shift emissions to the location where electricity is produced!

Electric vehicles can be considered as ZEVs if electricity is produced from solar, wind, small hydro, etc.

Bicycles and hydrogen cars both emit only water!

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Sustainable energy – renewable energy sources:


1st generation (since 1900): large hydro, biomass combustion, geothermal power & heat 2nd generation (since 1973): solar heating&cooling, wind power, photovoltaics, bioenergy 3rd generation (under R&D): biomass gasification, biorefinery, concentrating solar, ocean energy, hot dry rock geothermal energy

IEA, Renewables in global energy supply

Renewable energy sources for the 1st half of the 21st century:

wind energy photovoltaic concentrated solar

hydro power biofuels hydrogen geothermal power tidal&wave power

Excerpt from National Geographic Magazine, July 2010:

Europe's smart grid: Nine northern European countries agreed to link their grids by building transmission lines under the North Sea.

New lines under the Mediterranean are proposed to tap solar power from the Sahara.

A GRID THAT WORKS BOTH WAYS

A smart grid will change how the average homeowner thinks about electricity by constantly sharing usage data with the power company, which juggles supply (and pricing) accordingly. Consumers are rewarded for not hogging energy at

At Home

Locally

Regionally

Smart meters allow consumers to program their appliances to run (or their

electric cars to charge) at

off-peak hours, when elec-

tricity is cheap. Customers

who generate energy on

a small scale, say from a wind turbine or solar panels, can sell it back to the grid.

Using data transmitted

from homes and offices, utilities can monitor electric-

ity use and tweak the flow-

demand. Renewable energy

distributed locally, with any

surplus diverted into storage.

adjusting thermostats, for instance, to flatten spikes in

generated locally can be

To supplement fossil fuel plants, long-distance transmission lines are starting to stretch out from remote areas, which has plenty of sun and wind. New technology built into the grid will help by storing power during off-peak hours. times of peak demand; utilities benefit because power usage is more predictable and they learn immediately of any outages. Other improvements will make it easier to incorporate intermittent renewable energy sources such as wind and solar.

Solar panels, a smart meter, and a wind turbine Electricity flow Smart distribution substation Storage device for locally Rooftop solar generated panels energy Conventional Wind farm power plant Large-scale (coal, gas,

energy

storage

oil, nuclear)

Excerpt from NGM, July 2010

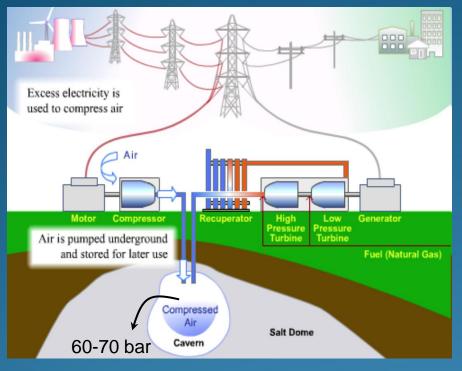
Central Control Unit

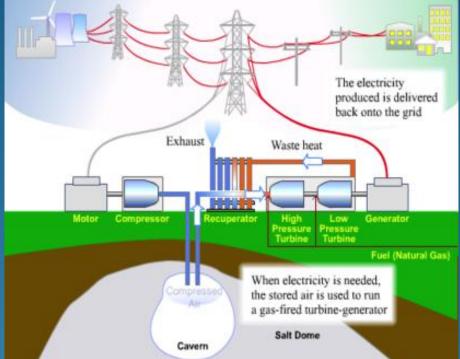
EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

On November 8, 2009, more than half of Spain's electricity was wind generated. A hopeful sign that lasted only a few hours. This was an instance where demand was very low and wind power generation very high. The average wind power grid penetration is about 10% in Spain. Denmark has an average wind power grid penetration of 20%.

How to rely on wind and solar energy which are intermittent and non-dispatchable?

Grid energy storage systems such as compressed air underground tanks, pumped-storage hydro, sodium-sulfur batteries, flywheel storage, thermal energy storage, vehicle-to-grid and hydrogen energy storage may be the solution to the problem insuring round-the-clock electricity distribution!



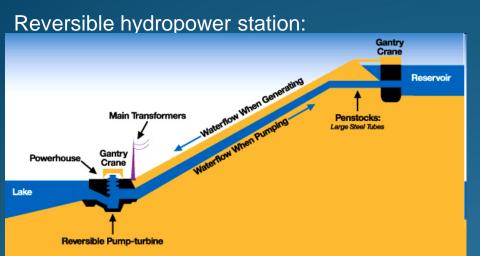


EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Wind/CAES system:

Excess electricity powers the air compressor which fills the cavern with pressurized air

Compressed air runs a gas-fired turbine to produce electricity in periods of shortage of wind or solar electricity

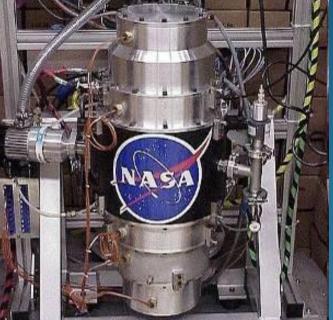


ECSAC

SUSTAINABLE ENERGY CHALLENGES AND OPPORTUNITIES

LOŠINJ AUGUST 2010

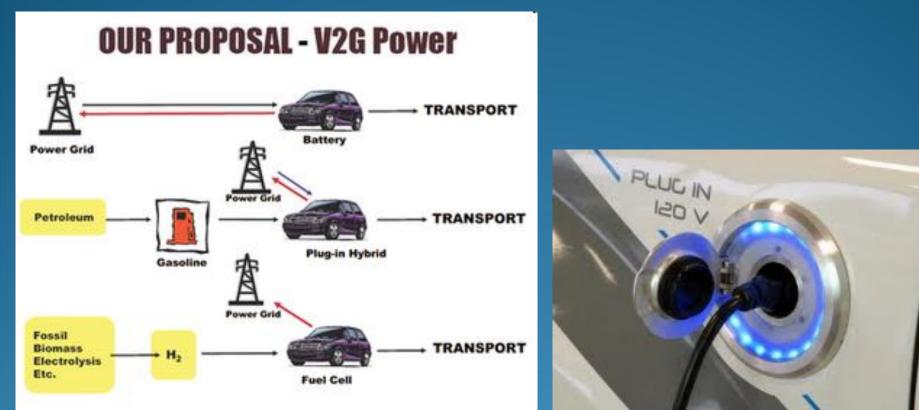
EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE



Formula One (2009) Team: Williams F1 Flywheel-KERS system Weight: 24 kg, 80 HP for 6.7 s per lap

Nasa G2 flywheel: Magnetic bearings, vacuum chamber. Carbon-fiber rotor at 50 000 rpm

NGK Sodium-sulfur battery: 1.2 MW, 7 hours of autonomy



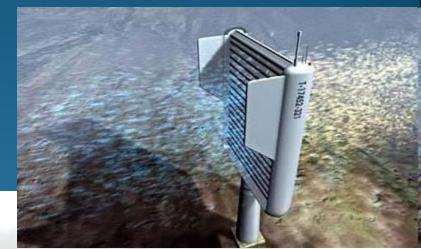
EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Vehicle-to-grid energy storage technology: a parked and plugged-in hybrid or electric vehicle can supply electricity from its 20 to 50 kWh battery pack to the grid for meeting peak demands.

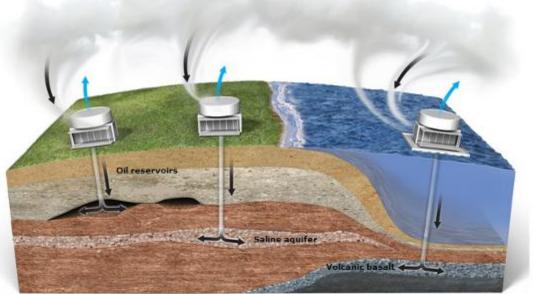

The drawback of the vehicle-to-grid idea is the fact that each storage cycle stresses the battery with one complete charge-discharge cycle.

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

CCS-Carbon Capture & Storage: Works for coal-fired power plants! What about cars and planes?


EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

CO_2 – scrubbers!?


How it works?

Wind blows air through plastic filters, which are laced with an absorbing agent that extracts CO_2 . The air exits the scrubber with less CO_2 . Saturated air filters are rinsed with water vapor in vaccum chambers to remove CO_2 . CO_2 is separated from water, pumped to liquid and stored underground.

Klaus Lackner, Columbia University

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Eventually, Europe will exploit all of its renewable energy potentials... But, will this be enough to replace fossil fuels entirely? If not, what kind of energy will we use? Nuclear power? Can we hope for breakthroughs in fusion power research?

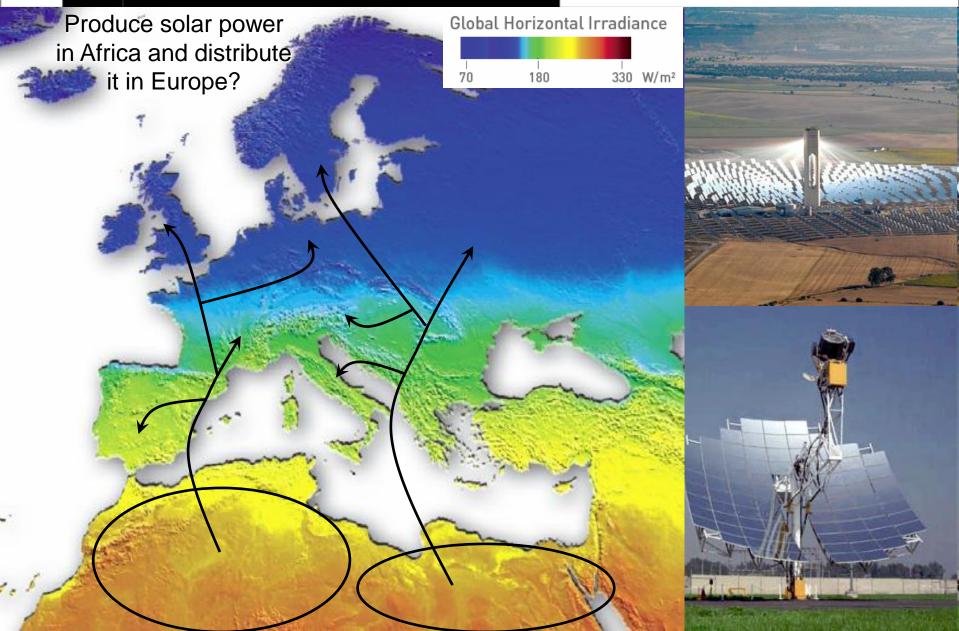
If we take that 20% of the final energy consumption will be supplied from renewables by 2020, is it reasonable to suppose a 50% renewable share by 2050?

The European Climate Foundation postulates a 80% renewable share, nuclear at 10% and fossil fuels (with extensive use of CCS) at 10% by 2050! The Greenpeace latest study postulates that renewable energy can cover 92% of the EU's total energy use and 97% of electricity by 2050!?

SUSTAINABLE ENERGY CHALLENGES AND OPPORTUNITIES

LOŠINJ AUGUST 2010

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE


Towards a 100% renewable energy future

The DESERTEC PROJECT

Clean Power from Deserts for Energy, Water and Climate Security

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

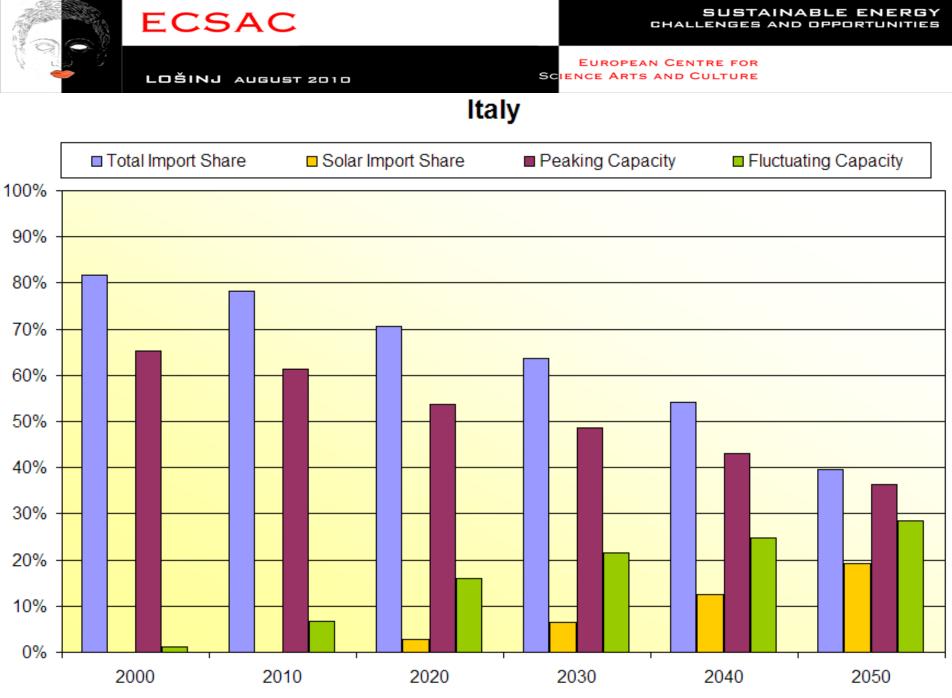
EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

DESERTEC PROJECT:

17 000 km² of concentrating solar power systems, solar PV systems and wind parks. High-voltage direct current (HVDC) cables for distribution of electricity in Europe, North Africa and Middle East. The DESERTEC would supply 15% of Europe's electricity demand. Estimated cost of the action: €400 billion

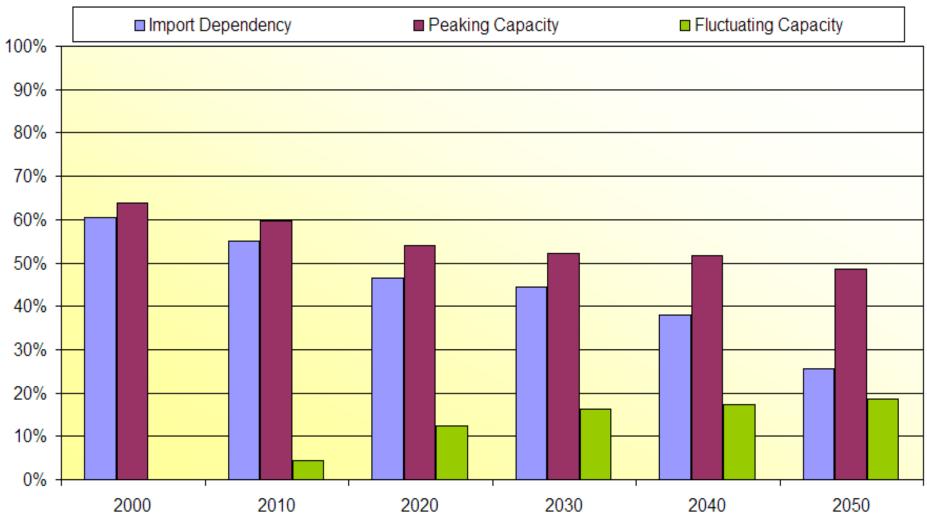
Consortium DII GmbH: Munich Re, TREC, Deutsche Bank, Siemens, ABB, E.ON, RWE, Abengoa Solar, Cevital, HSH Nordbank, M & W Zander Holding, MAN Solar Millennium, and Schott Solar. Interested parties: ENEL, Électricité de France, Red Eléctrica de España, ...

Problem? Generating so much of Europe's electricity in North Africa, a political dependency on northern African countries (which are still unstable, corrupted and lack of cross-border coordination) is being risked.
Problem? Who will be the owner of the project? Europe or North Africa?

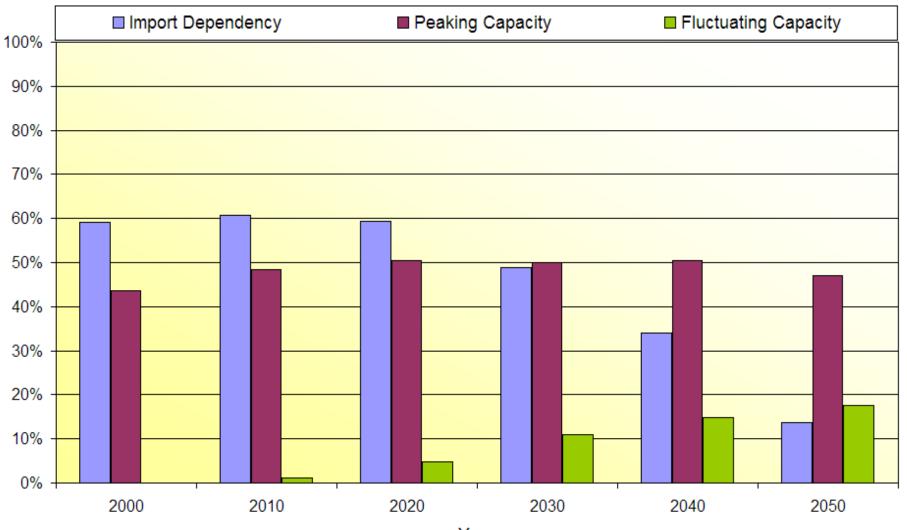

Problem? Cost of cabling, electricity losses, need of a super-smart grid?

The German Aerospace Center (DLR) has carried out studies on DESERTEC.

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE


The DESERTEC PROJECT EXCERPTS from TRANS-CSP study (DLR)

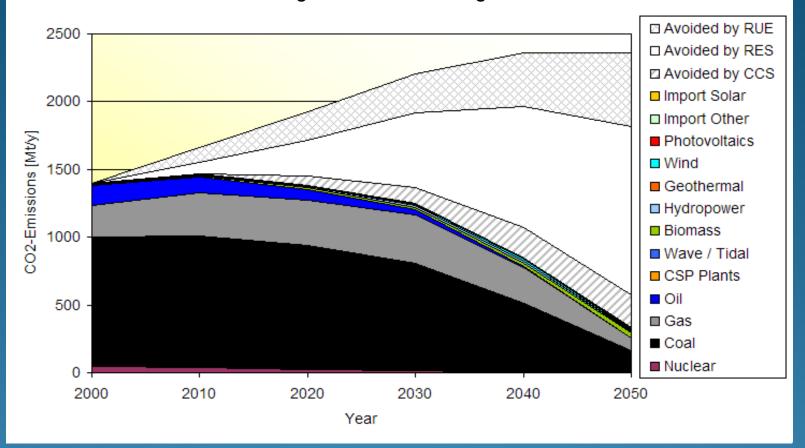
Year


Croatia

Year

Slovenia

Year



ECSAC

LOŠINJ AUGUST 2010

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

CO₂ emissions in: EU27+Turkey, Switzerland, Iceland, Norway, Croatia, Serbia, Montenegro, Bosnia&Herzegovina, Macedonia

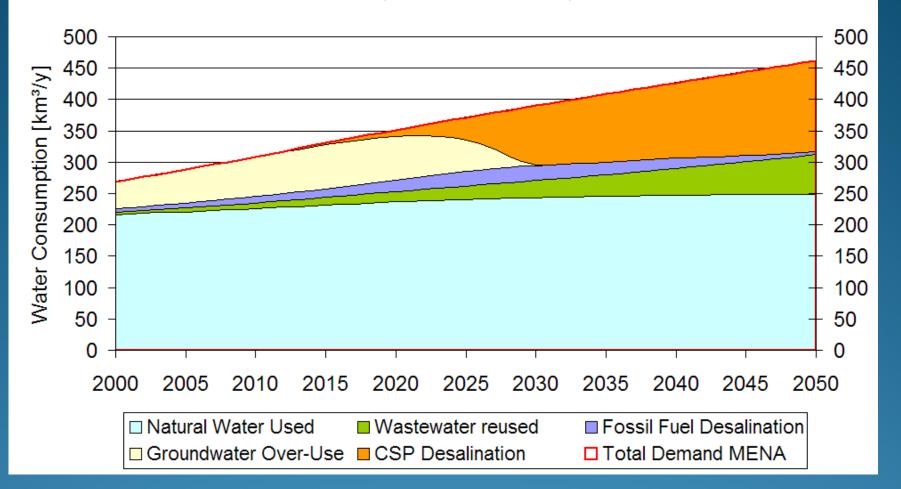
ECSAC

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

The DESERTEC PROJECT EXCERPTS from AQUA-CSP study (DLR)

The IDEA:

Areas of the deserts in Middle East and North africa could become productive for agriculture when fresh water would become available from the desalination of sea water using the waste heat from CSP plants.


ENERGY+WATER+INCOME = SUSTAINABLE DEVELOPMENT IN ARID REGIONS

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

Middle East and North Africa Water Consumption Saudi Arabia, UAE, Yemen, Qatar, Bahrain, Kuwait, Oman, Iran, Palestine, Syria, Jordan, Israel, Egypt, Libya, Tunisia, Algeria, Morocco

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

What if the DESERTEC PROJECT failes?

Should Europe start thinking of smaller, regional energy systems and merge them later on?

Should all the countries of the Adriatic region (South-East Europe) organize themselves to realize an "ADRIATEC PROJECT" similar to the North Sea smart grid?

ECSAC

LOŠINJ AUGUST 2010

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

For gas we already got the South Stream!

NORTH STREAM:

Connection: Russia-EU (via Baltic sea) Transport capacity: 55 billion cubic metres/year Partners: Gazprom 51%, BASF/Wintershall 20%, E.ON Ruhrgas 20%, Gasunie 9% Scheduled for operation: 2 Lines. First scheduled for 2011, second for 2012

SOUTH STREAM:

Connection: Russia-EU (via Black sea) Transport capacity: 63 billion cubic meters/year Partners: Gazprom 50%, ENI 50% Scheduled for operation: End of 2015

NABUCCO:

Connection from: Caspian region, Middle East,Egypt to EU Transport capacity: 31 billion cubic meters/year Partners: BOTAS, BEH, MOL, OMV, RWE, Transgaz. Each 16,67% Scheduled for operation: End of 2015

PROJECTED ROUTES OF NORD STREAM, NABUCCO AND SOUTH STREAM Vvborg RUSSIA Sassnitz GERMANY Baumgarten ROMANIA Vienna □Budapest AUSTRIA Beregovya Bucharest HUNGARY Black Sea SERBIA-BULGARIA ITALY Sofia Istanbul Erzurum Ankara TURKEY GREECE Nord Stream South Stream Nabucco

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

CONCLUSION

A sustainable energy future involving large shares of renewable energy and a low-carbon society would require substantial energy savings through:

- efficiency technologies,
- improved public transport systems,
- shift of freight transport from road to rail,
- hydrogen and electric vehicles,
- smart building design,
- renewable HVAC technologies,
- renewables electricity for industrial processes,
- implementation of supersmart grids,
- phase-out of nuclear and coal power

These challenges will require more of an energy revolution than an evolution! Are we ready for it?

EUROPEAN CENTRE FOR SCIENCE ARTS AND CULTURE

CONCLUSION

The energy future of the countries in the Adriatic region will be strongly interlaced with the energy plans of the EU. However, each country should use its own renewable energy potentials and implement measures to enhance energy efficiency, rational use of energy, sustainable housing and environmental protection as much as possible to reach a stage of sustainable energy.

Thank You!

References:

ENEA: Le fonti rinnovabili 2010, Ricerca e innovazione per un futuro low-carbon, Rome, 2010. http://www.enea.it/produzione_scientifica/pdf_volumi/V2010_07-FontiRinnovabili.pdf

- 2. Ministry of Economy, Labour and Entrepreneurship: Energy in Croatia, 2008, Zagreb 2009. http://www.mingorp.hr/UserDocsImages/ENERGETIKA/EUH08_za%20web.pdf
- 3. Ministry of Economy, Labour and Entrepreneurship: Energy Strategy in Croatia, Zagreb 2008. http://www.energetska-efikasnost.undp.hr/attachments/181_Nacrt%20Energetske%20Strategije%20_ Zelena_knjiga_101108.pdf
- 4. Europe's energy portal http://www.energy.eu/
- 5. EBRD Renewable energy initiatiave http://www.ebrdrenewables.com/sites/renew/default.aspx
- 6. 3TIER Renewable Energy Information Services :: Wind, Solar, Hydro http://www.3tier.com/en/
- 7. DESERTEC Foundation http://www.desertec.org/
- 8. DLR Institut fur Technische Termodynamik http://www.dlr.de/tt/desktopdefault.aspx/tabid-2885/4422_read-6588/
- 9. NGM The 21st century grid http://ngm.nationalgeographic.com/2010/07/power-grid/achenbach-text/1