

Status of the MUonE project

Giovanni Abbiendi
(INFN Bologna)
on behalf of the proponents

a_{...} measurement versus SM

Status report:

T. Aoyama et al., Phys.Rept.887(2020)1 $a_{II}^{HVP,LO} = 693.1(4.0) \times 10^{-10}$

3.7 σ discrepancy: new physics ?

Recent lattice (still unpublished) BMW20 arXiv:2002.12347 $a_{II}^{HVP,LO} = 708.7(5.3) \times 10^{-10}$

New g-2 experiment on-going at Fermilab aims at a reduction of the experimental error by a factor of 4

Theory error dominated by the LO Hadronic contribution to the Vacuum Polarization: 0.6%

should be improved

MUonE experiment proposal: independent method, competitive precision

MUonE experiment idea Eur.Phys.J.C77(2017)139

Very precise measurement of the running of α_{OFD} from the shape of the differential cross section of elastic scattering of μ (150-160GeV) on atomic electrons of a fixed target with low Z (Be or C) at the CERN SPS

$$\frac{d\sigma}{dt} \approx \frac{d\sigma_0}{dt} \left| \frac{\alpha(t)}{\alpha(0)} \right|^2 \approx \frac{d\sigma_0}{dt} \left| \frac{1}{1 - \Delta\alpha(t)} \right|^2$$

running of α From $\Delta \alpha_{had}(t)$ determine a_{μ}^{HLO} by the

space-like approach: Phys.Lett.B746(2015)325

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{1} dx (1 - x) \Delta \alpha_{had}[t(x)]$$

Observable effect ~ 10⁻³/wanted accuracy ~10⁻²

→ required challenging precision ~10⁻⁵

 $\Delta \alpha(t) = \Delta \alpha_{lep}(t) + \Delta \alpha_{had}(t)$

- **Elastic scattering: simple kinematics.**
- Scattering angles θ_e and θ_μ correlated (helps selection: rejection of radiative/inelastic events)
- For E(beam)=150 GeV the phase space covers 87% of the a_{μ}^{HLO} integral.
 - Smooth extrapolation to the full integral with a proper fit model

MUonE Detector Layout

The detector concept is simple, the challenge is to keep the systematics at the same level as the statistical error .

- Large statistics to reach the necessary sensitivity
- Minimal distortions of the outgoing e/μ trajectories within the target material and small rate of radiative events
- Modular structure of 40 independent and precise tracking stations, with split light targets equivalent to 60cm Be
- > ECAL and Muon filter after the last station, to help the ID and background rejection

Boosted kinematics: θ_e <32mrad (for E_e >1 GeV), θ_μ <5mrad: the whole acceptance can be covered with a 10x10cm² silicon sensor at 1m distance from the target, reducing many systematic errors

Detector choice: CMS-upgrade Outer Tracker 2S

MUonE Letter-Of-Intent SPSC-I-252

Details: see CMS Tracker Upgrade TDR

Two close-by planes of strips reading the same coordinate, providing track elements (**stubs**)

suppression of background from single-layer hits or large-angle tracks

- ➤ Large active area 10x10 cm²
 - -> complete/uniform angular coverage with a single sensor
- Good position resolution ~20μm
 - -> further improvable with a 15°-20° tilt around the strip axis and/or with effective staggering of the planes (with a microrotation)

MAIN Difference w.r.t. LHC operation: signal is asynchronous while sampling has fixed clock at 40MHz -> can be overcome with a specific configuration of the FE

MUonE proposal

June 2019: Letter-Of-Intent at the SPSC LOI SPSC-I-252

January 2020: SPSC acknowledges the interest of the MUonE proposal and approves

a Test Run to be held in 2021

MUonE has been allocated 3 weeks beam time at the end of the proton running in the North Area (Oct-Nov 2021), unless SPS schedule changes

It will be installed upstream of COMPASS in the region presently occupied by CEDARS

still growing up

INFN +Univ. (Bologna, Milano-Bicocca, Padova, Pavia, Perugia, Pisa, Trieste) *Exp-Th*

Imperial College (London), Liverpool U. *Exp-Th*

Krakow INP Pan *Exp*

Northwo Virginia E

Northwestern U., Virginia U. Exp

7

Budker Inst. (Novosibirsk) *Exp*

Shanghai Jiao Tong U. *Exp*

U.Zürich

Th

+ other involved theorists from: LAPTH/Annecy (F), U.Valencia (E), KIT/Karlsruhe (D), New York City Tech (USA)

Test Run setup

To be held at CERN in Fall 2021: 3 weeks allocated with full intensity μ beam Location: M2 beam line, upstream of the COMPASS detector, after its BMS (available ~40 m)

Main objectives:

- Confirm the system engineering
- Check mechanical and thermal stability.
- Test the alignment procedure
- Assess the detector counting rate capability.
- Check the DAQ system.
- \circ Validate the trigger strategy (FPGA real-time processing to identify and reconstruct μ -e events).
- Assess the systematic errors
- \circ After commissioning, take data to measure the leptonic contribution to the running of $\alpha(q^2)$.

If the results are satisfactory proceed to full-scale experiment to be deployed during LHC Run3

MUonE tracking station

Target followed by 3 tracking layers: each one is a pair of close-by 2S modules with orthogonal strips, tilted by 233mrad

Stringent request: relative positions within the station stable to better than $10\mu m$

Low CTE support structure: INVAR (alloy of 65%Fe, 35%Ni) Cooling system, tracker enclosure, Room temperature stabilized within 1-2 °C

Simulation: Intrinsic Resolution – Tilted geometry

Tilting a sensor around an axis parallel to the strips \rightarrow Charge sharing between adjacent strips, improving the resolution

The best is obtained when <cluster width>~1.5 (same number of clusters made of 1 or 2 strips) for a tilt angle ~15 degrees

Further improvement: a small tilt of 25mrad is equivalent to an half-strip staggering of the two sensor layers of a 25 module

Final resolution: 22 μ m \rightarrow 8-11 μ m

measured coordinate (x) determined by hit position on one layer and direction of the track stub

Tilt angle [mrad]	 <bend> [strips]</bend>	threshold $[\sigma]$	resolution $[\mu m]$	<pre><cluster width=""> [strips]</cluster></pre>
210	4.25	5	7.8	1.51
221	4.5	5.5	11.5	1.51
233	4.75	6	8.0	1.50
245	5	6.5	11.2	1.51
257	5.25	7	8.7	1.50
268	5.5	7.5	11.0	1.49

Tracker mechanics

Two aluminium mockups have been built: test mounting of dummy stations, planarity, alignment, cooling system, precision movement system and holographic system

Each station's position/orientation will be precisely adjustable with 3 motorized linear stages allowing to shift on X, Y axes by up to 3cm in steps of 5 μm (by kinematic coupling)

Calorimeter

PbWO4 crystals used by the CMS ECAL

Small 5x5 array, size $14x14 \text{ cm}^2$, length 22cm (24.7 X_0)

Mechanics: Carbon fiber alveolar structure with

- cooling system
- thermal insulation by polyurethane rigid foam panels and temperature control ($\Delta T < 0.1 \,^{\circ}C$)
 - Both crystal light yield and APD gain depend on temperature: $(\approx -2\%)$ °C for the crystals, and $\approx -4\%$ °C for the APDs)
- all cables and fibers on the back face
- movable with mm precision in the two axes perpendicular to beam

Hamamatsu APD sensor (1 cm²)

FE electronics linking with Serenity board for DAQ

Laser calibration /monitoring system for APD and FEE gain

Plan for the Test Run: NO online selection, read out all data (3 stations)

FPGA algos will be run online just to tag events and replayed offline for detailed studies Data taking for ~two weeks, SPS efficiency ~2/3 \rightarrow ~0.5 PB of data

The Test Run will be a proof of concept for the MUonE DAQ

Status / plans for the Test Run

- Tracker: delays (few months) in the procurement of the 2S modules (bottleneck: hybrids' production) due to Covid-19
 - Unlikely to have more than one MUonE tracking station fully integrated and ready for beam test in Fall 2021
 - Situation still subject to unpredictable changes
- Calorimeter: tight schedule but original plan still feasible
- DAQ: good progress, but partly related to the availability of tracker modules

MUonE plans to have the Test Run at the end of 2021 even with a partial setup

- In this case with reduced objectives, mainly detector commissioning in real conditions of beam and environment
- If so we will consider the request of some time in early 2022, according to which conditions will have been realized in 2021.

1/Mar/2021 14

2018 Beam Test: µe elastic scattering

arXiv:2102.11111

CERN North Area, downstream COMPASS 8mm C target Si strip tracking (sensors from AGILE, with worse resolution than MUonE) Small BGO ECAL

 μ spectrum peaked at 187 GeV From decays of 190 GeV beam π 1m W dump absorbing all surviving π

Setup with lower performance than MUonE (σ_X ~35 μ m) Selection of a clean sample of elastic events

Important:
Simulation of
Background
processes in part.
e+e- pair
production

New GEANT4 version 10.7 (validation ongoing)

Expected sensitivity of a First Physics Run

Expected integrated Luminosity with the Test Run setup with full beam intensity & detector efficiency ~ 1pb-1/day

In one week $^{\sim}5pb^{-1} \rightarrow ^{\sim}10^9 \,\mu e$ scattering events with $E_e > 1$ GeV

Initial sensitivity to the hadronic running of α .

Pure statistical level: 5.2σ 2D (θ_{μ} , θ_{e}) K=0.136 ± 0.026

Definitely we will have sensitivity to the leptonic running (ten times larger)

Template fit with just one fit parameter K=k/M in the $\Delta\alpha_{had}$ parameterization. The other parameter fixed at its expected value: $M=0.0525~GeV^2$

Systematic Effects: Multiple Coulomb Scattering

Particle trajectories disturbed: especially low-energy electrons

Effects of a flat error of ±1% on the core width of multiple scattering

Multiple scattering previously studied in a Beam Test in 2017: JINST 15 (2020) P01017 with 12–20 GeV electrons on 8-20 mm C targets

1/Mar/2021 17

Systematic Effects: Beam Energy scale

Time dependency of the beam energy profile has to be continuously monitored during the run:

- SPS monitor
- needed external infos

However, the absolute beam energy scale has to be calibrated by a physics process: kinematical method on elastic µe events

For equal angles:
$$\theta_{\mu} = \theta_{e} \equiv \theta$$
 $\theta \simeq \sqrt{\frac{2m_{e}}{E}}$

Can reach <3 MeV uncertainty in a single station in less than one week From SPS E scale ~1%: 1.5 GeV

Effect of a syst shift of the average beam energy on the θ_u distribution: 1h run / 1 station

STATUS: report of the **MUonE theory initiative**

"Theory for muon-electron scattering @ 10ppm", P.Banerjee et al, Eur.Phys.J.C80(2020)591

NLO exact calculation including masses ($m_{\mu\nu}$ m_e) and EWK corrections in a fully differential MC code M.Alacevich et al, JHEP02(2019)155 cross-checked with independent calculation by Fael & Passera

Full NNLO not yet available

- Two-loop master integrals ($m_e=0$, $m_{\mu}\neq 0$) planar <u>P.Mastrolia et al, JHEP11(2017)198</u> and non-planar <u>S.Di Vita et al, JHEP09(2018)016</u>
- NNLO hadronic corrections: M.Fael, M.Passera, Phys.Rev.Lett.122(2019)192001; M.Fael, JHEP02(2019)027
- Framework to recover leading m_e terms at NNLO from amplitudes calculated with massless electrons:
 T.Engel et al., JHEP02(2019)118, JHEP01(2020)085
- Two independent fully exclusive NNLO MC codes, featuring the exact NNLO photonic corrections on the leptonic legs, including all mass terms: C.Carloni Calame et al., arXiv:2007.01586; P.Banerjee et al, arXiv:2007.01654

VERY GOOD AGREEMENT between the two codes

Resummations (Parton shower and YFS) matched to (N)NLO fixed order under way

Study of possible contaminations from NEW physics on MUonE:

A.Masiero, P.Paradisi and M.Passera, arXiv:2002.05418 P.S.Bhupal Dev et al., JHEP05(2020)53

→ MUonE is NOT vulnerable!

Summary

- Long-standing puzzle of muon g-2:
 - Experiment-Theory(SM) discrepancy 3-4σ
 - sensitive to BSM physics
 - Ongoing/future experiments will reduce the exp.error by a factor of 4
 - Theory error dominated by the Leading Hadronic contribution a, HLO
- **MUonE** experiment proposal: measuring the running of α_{QED} from the shape of the differential cross section for elastic scattering of $\mu(150 \text{GeV})$ on atomic electrons at the CERN SPS <u>Eur.Phys.J.C77(2017)139</u>
 - Getting a_uHLO with a novel method integrating over the space-like region
 - Independent and complementary to the standard method integrating over the time-like region and to lattice QCD calculations
 - Competitive precision $^{\sim}0.35$ -0.5% on a_{μ}^{HLO} allowing to better constrain the theory prediction , will help to solve the puzzle
- Letter-Of-Intent SPSC-I-252 submitted to CERN in June 2019
- CERN has recognized the fundamental interest and approved a Test Run to be carried out at the end of 2021, which should verify the detector design and assess the potential to achieve a competitive measurement, as a condition to move on towards the full-scale experiment.
 - Main challenge: control of systematic effects at the level of the statistical precision
- Full-scale experiment foreseen during LHC Run3 (2022-2024) if results of the Test Run are satisfactory
- Delays in the Test Run preparation related to the Covid-19 pandemic, need to follow up the evolving situation

BACKUP

Muon anomalous magnetic moment

$$\vec{M}_l = g_l \frac{e}{2m_l} \vec{S}$$

Dirac eq : $g_1 = 2$ Quantum corrections \rightarrow the anomaly

$$a_l \equiv \frac{g_l - 2}{2}$$

This observable can be both precisely measured experimentally and predicted in the Standard Model, providing a stringent test of the SM.

E821 experiment at BNL:

$$a_{\mu}^{E821} = 11659209.1(5.4)(3.3) \times 10^{-10}$$

0.54 ppm Dominated by statistics

Phys.Rev.D73 (2006) 072003

$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{EWK} + a_{\mu}^{had}$$

QED corrections known up to 5 loops, rel. precision ~7x10⁻¹⁰ LO term (Schwinger) = $\alpha/2\pi$ ~ 0.00116

EWK corrections ~ 10-9 rel. uncertainty <1%

Hadronic contribution ~ 7x10⁻⁸ -not calculable by pQCD-

Main contribution: LO Vacuum Polarization estimated rel. uncertainty 0.6%

aµHLO: standard data-driven approach (time-like)

Dispersion re $\frac{1}{\gamma}$ $\frac{1}{\gamma}$ $\frac{1}{\gamma}$

Dispersion relations, optical theorem:

$$a_{\mu}^{HLO} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^{2} \int_{4m_{\pi}^{2}}^{\infty} ds \frac{\hat{K}(s) R_{had}(s)}{s^{2}}$$

$$R_{had}(s) = \sigma(e^+e^- \rightarrow hadrons)/\sigma(e^+e^- \rightarrow \mu^+\mu^-)$$

K smooth function

Traditionally the integral is calculated by using the experimental measurements up to an energy cutoff, beyond which perturbative QCD can be applied.

Main contribution: low-energy region (1/s² enhancement), highly fluctuating due to hadron resonances and thresholds effects

Alternative: Lattice QCD calculations

continuously progressing, expected to become more and more competitive in the near future

HLO: the MUonE approach (space-like data)

C.M. Carloni Calame, M. Passera, L. Trentadue, G. Venanzoni, Phys.Lett.B746(2015)325

$$a_{\mu}^{HLO} = \frac{\alpha}{\pi} \int_{0}^{1} dx (1 - x) \Delta \alpha_{had}[t(x)]$$

$$t(x) = -\frac{x^2 m_{\mu}^2}{1 - x} \qquad 0 \le -t < \infty$$

$$0 \le x < 1$$

$$0 \le -t < \infty$$

$$0 \le x < 1$$

 $\Delta\alpha_{\mathsf{had}}$ is the hadronic contribution to the running of α in the space-like region (t<0)

$$\alpha(t) = \frac{\alpha}{1 - \Delta\alpha(t)}$$

$$\Delta\alpha = \Delta\alpha_{lep} + \Delta\alpha_{had}$$

Integrand function smooth: no resonances Low-energy enhancement:

peak of the integrand at $x \approx 0.9 \rightarrow t = -0.11 \text{ GeV}^2 \rightarrow \Delta \alpha_{had} \sim 10^{-3}$

LO µ-e elastic scattering

$$\frac{d\sigma}{dt} = \frac{4\pi\alpha^2}{\lambda(s, m_e^2, m_u^2)} \left[\frac{(s - m_e^2 - m_\mu^2)^2}{t^2} + \frac{s}{t} + \frac{1}{2} \right]$$

$$\frac{d\sigma}{dt} = \frac{d\sigma_0}{dt} \left| \frac{\alpha(t)}{\alpha(0)} \right|^2 \qquad \alpha(t) = \frac{\alpha(0)}{1 - \Delta\alpha(t)} \qquad \Delta\alpha(t) = \Delta\alpha_{\text{lep}}(t) + \Delta\alpha_{\text{had}}(t)$$

Simple kinematics: t ≅-2 m_e E_e

 E_{e} can be determined from the scattering angle θ_{e} and the beam energy

Location @ CERN & M2 beam parameters

MUonE Letter-Of-Intent SPSC-I-252

Very small divergence ~0.2-0.3 mrad

M2 beam typical max intensity: $5x10^7 \mu/s$ SPS Fixed Target cycle ~15-20 s / Spill duration ~ 5s

Upstream of the COMPASS detector, after its Beam Momentum Station (BMS), on the M2 beam line: available ~ 40 m

Beam spot size $\sigma_X \sim \sigma_Y \sim 3$ cm

1/Mar/2021 26

Tracker mechanics (2)

- Tracker enclosure shielding from light and to stabilise thermally
- Electrical, optical and hydraulic connections on the top, removable side panels
- Further complemented by a surrounding tent containing also the calorimeter,
 with chiller stabilising the room temperature

Calorimeter (2)

Thermal insulator

FRONT Side

5mm thick Al foil

Aluminum plates with embedded cooling pipes

The DAQ and trigger system

$\Delta\alpha_{had}$ parameterization

Physics-inspired from the calculable contribution of lepton-pairs and top quarks at t<0

$$\Delta \alpha_{had}(t) = k \left\{ -\frac{5}{9} - \frac{4M}{3t} + \left(\frac{4M^2}{3t^2} + \frac{M}{3t} - \frac{1}{6} \right) \frac{2}{\sqrt{1 - \frac{4M}{t}}} \log \left| \frac{1 - \sqrt{1 - \frac{4M}{t}}}{1 + \sqrt{1 - \frac{4M}{t}}} \right| \right\}$$

M with dimension of mass squared, related to the mass of the fermion in the vacuum polarization loop k depending on the coupling $\alpha(0)$, the electric charge and the colour charge of the fermion

Low-|t| behavior dominant in the MUonE kinematical range:

$$\Delta \alpha_{had}(t) \simeq -\frac{1}{15} \frac{k}{M} t$$

 a_{μ}^{HLO} calculable from the master integral in the FULL phase space with this parameterization.

Instead simple polinomials diverge for x->1 (green is a cubic polinomial in t)

Extraction of the hadronic running of α

Most easily displayed by taking ratios of the observed angular distributions and the theory predictions evaluated for $\alpha(t)$ corresponding to only the leptonic running. Observable effect ~ 10^{-3} / wanted precision ~ 10^{-2} \rightarrow required precision ~ 10^{-5}

Example toy experiment shown with statistics corresponding to the nominal integrated Luminosity $L = 1.5 \times 10^7 \text{ nb}^{-1}$ (corresponding to 3-year run)

Template fit to the 2D angular distribution from NLO MC generator with parameterised detector resolution.

 $\Delta \alpha_{had}(t)$ parameterised according to the "Lepton-Like" form. Shape-only χ^2 fit.

Multiple Coulomb scattering

Studied in a Beam Test in 2017:

JINST 15 (2020) P01017 12-20 GeV electrons

on 8-20 mm C targets

Adapted UA9 detector at CERN H8 Beam Line

- Good description of data with a fit.
- Distribution core within 1-few % from GEANT.

 $\begin{array}{c}
0.4 \\
\Delta\theta_{\rm X} \text{ [rad]}
\end{array}$

GEANT4 simulations

Effect of the tracker position resolution on θ_{μ} vs θ_{e} distribution:

(Left) TB2017: UA9 resolution 7μm; (Right) TB2018: resolution ~35-40μm

Signal: elastic μe

Background: e⁺e⁻ pair production

