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Detecting dark matter at BASE-CERN
Jack Devlin (CERN, RIKEN)
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1. Couplings between antiprotons and dark matter
2. Dark matter decays in the BASE detectors

3. Future perspectives




The BASE experiment
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Measuring magnetic moments

g 2mv, v v, is the Larmor frequency, the frequency at which rf can most easily flip the spin

2 Belty Vg

To measure v;, just need a way to identify the antiproton spin state

Detecting changes in the direction or size of u

0.20F 1 The particle has a total magnetic moment u (spin + orbital)

0.15:-'

: If we add an inhomogeneous field B = By + B,(z?—p?/2) then there
is an additional force V(u - B) which contributes to the axial trapping
force
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AxialFrequency shift (Hz)

This shifts the axial frequency depending on u, so the spin state can be
identified




Couplings between dark matter and antiprotons

Measure the coupling Lipnt = — ?c—at/;y”)/S 1) between ultralight, pseudoscalar ALP relic dark matter and p
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a- p coupling limits a natural bi-product of precision CPT tests
C. Smorra et al., Nature 575, 310 (2019). 5



The BASE frequency detection system
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Resolving single antiproton spin
flips requires the highest Q and

lowest temperature LC resonant
detectors ever built- BASE-CERN
is the state of the art

H. Nagahama et al., Rev. Sci. Instrum. 87, 113305 (2016). 6



Conversion of Axion-like particles into photons in the detector

Axions can couple to photons via the interaction term Lipt = — % aF,, F*

This modifies Maxwell’s equations

V-§=p—gay§-Va
Vx§—6t§=f+gay(§6ta—ExVa)

V-BE=0
VXE+3d,B=0

Inside the resonator housing, d < A,, and where there is a strong field B,, the axions
source a magnetic field
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Sikivie et al. PRL 112, 131301 (2014); Y. Kim et al. Phys. Dark Universe 26, 100362 (2019). 7
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f(v,Q.q) is a lorentzian line-shape function proportional to Re{Z} ry is the inner radius of the toroid
e, is the equivalent input noise of the amplifier r, is the outer radius
K is the coupling constant gay is the coupling constant How to measu re T ?
Q is the resonator Q-factor B is the static magnetic field z
Nr is the number of turns Qg is the dark matter density

lis the length of the toriod along the magnet B field

J. A. Devlin et al., Phys. Rev. Lett. 126, 041301 (2021). &



A quantum “Boltzmann” thermometer
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Limits

We use maximum likelihood estimation to estimate g,,, and then decide if we have a discovery, or set limits
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J. A. Devlin et al., Phys. Rev. Lett. 126, 041301 (2021); J. W. Foster et al. Phys. Rev. D 97 (2018).



=l g= Next step: frequency tuning

Cryogenic adjustable capacitance with no loss of Q already developed
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Future potential

Small detector(s): 5 cm long, 5 cm diameter
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Immediately realizable with BASE technology
today, 6-9 months assembly time
%" = 2.4 nV/v/Hz, 7T, 1 year acquisition)

Possible in the short term with detector RnD
work using BASE know-how

h— 24 nV/\/E, 7 T, 1 year acquisition, use multiple
higher frequency coils without excessive Q-loss)
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Large detector: 80 cm long, 14 cm diameter

Optimistic projection, “normal” Penning trap magnet
%" = 2.4 nV/vHz, 7T, 1 year acquisition, 10 mK, Q=200,000)
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Pushing the sensitivity further

|

Much large detector volumes- in discussion with RADES/babylAXO
Colder detectors- laser cooled resonators?

Lower noise amplifiers — particle assisted readout?
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Input from other CERN experts appreciated!
e.g. NbTi coating or HTS tape for large cavities.
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Takeaway message-unique possibilities at BASE

1.

Long-term investigations of antiproton-relic dark matter
coupling

Transfer state-of-the-art technologies developed for high
precision antimatter measurements to detect relic dark
matter particles

BASE Penning traps at CERN as an interface between
quantum measurement techniques and large detectors
for weak EM radiation



Thank you!

* Mainz: Measurement of the magnetic moment
of the proton, implementation of new

technologies l % m ™

 CERN-AD: Measurement of the magnetic
moment of the antiproton and
proton/antiproton g/m ratio

* Hannover/PTB: QLEDS-laser cooling project, new
technologies

ST - Experiment of the momentﬁ
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Special Topics
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C. Smorra et al., EPJ-Special Topics, The BASE Experiment, (2015).
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