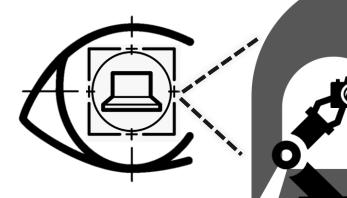
### **T-INSPECT:**

## A Vision-based Tunnel Structural Health Monitoring Solution using Deep Learning and Data Fusion

#### Summary Report, 19th March 2021


Leanne Attard

Mario di Castro

Luca Buonocore

**Eloise Matheson** 

**BE-CEM** 





## Outline

- Motivation
- Robotics at CERN
- Monitoring solution
  - Data Acquisition
  - Anomaly Defect Detection
  - Change Detection
  - Visualization for surface documentation
- Ongoing and future work
- Conclusion

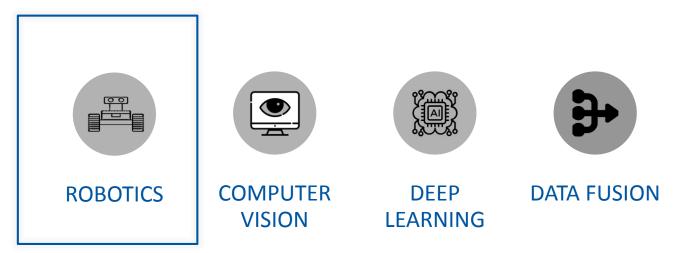


## Outline

### Motivation

- Robotics at CERN
- Monitoring solution
  - Data Acquisition
  - Anomaly Defect Detection
  - Change Detection
  - Visualization for surface documentation
- Ongoing and future work
- Future work




## Needs from SCE department



- Reduce inspection time
- Reduce personnel presence in tunnels
- Objective inspection, to reduce report subjectivity
- Change monitoring
- Visualization to aid tunnel surface documentation and analysis



### SHM Structural Health Monitoring



## mechatronics and robotics for a remotely operated automatic inspection system



## Outline

#### Motivation

### Robotics at CERN

- Monitoring solution
  - Data Acquisition
  - Anomaly Defect Detection
  - Change Detection
  - Visualization for surface documentation
- Ongoing and future work
- Conclusion



### **Robotics at CERN**

improved personnel safety and machine availability



Telemax



TIM (in-house)



CERNbot (in-house)



Teodor



EXTRM (in-house)



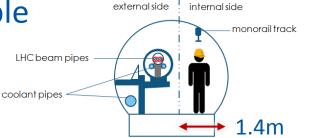
CHARMbot (in-house)










## Outline

- Motivation
- Robotics at CERN
- Monitoring solution
  - Data Acquisition
  - Anomaly Defect Detection
  - Change Detection
  - Visualization for surface documentation
- Ongoing and future work
- Conclusion



### **Challenges & Constraints**

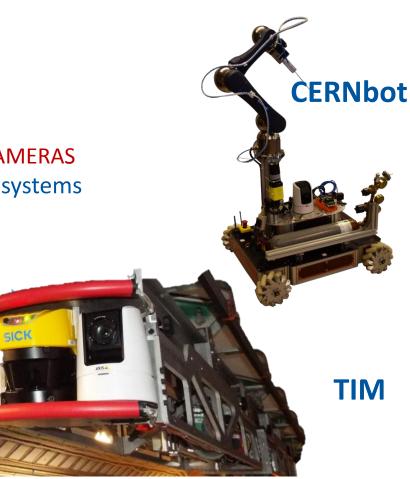
- accessibility during limited time windows
- difficult conditions (radiation, dust etc.)
- Iong distances, capture from moving robots
- Iow and non-uniform lighting conditions
- limited space available












### Data Acquisition Setup

- Phase 1 Investigation
  - study of possible sensors for inspection CAMERAS
  - continuous market research on inspection systems

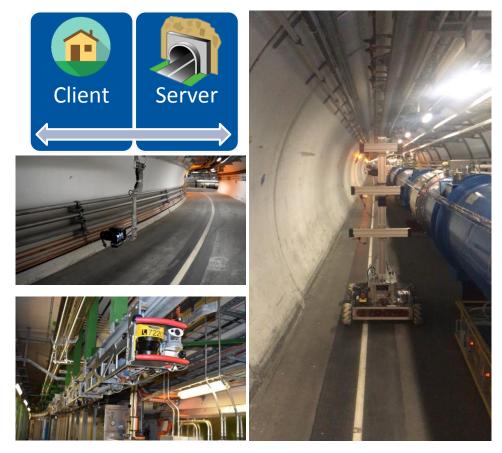
#### Phase 2 – Implementation and testing

- In-house setups
- data acquisition from a camera on TIM
- multiple camera-setup on CERNbot
- Commercial system
- demo test in LHC tunnel





## In-house setups

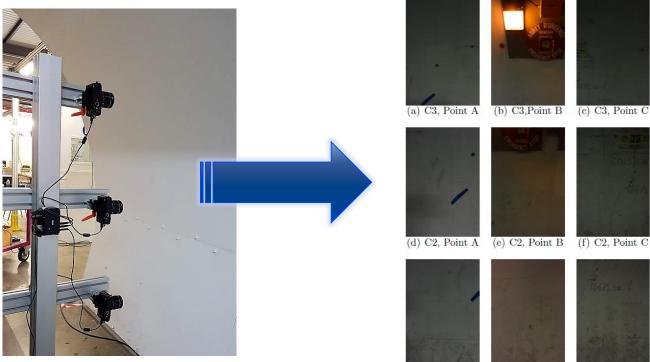

#### Software

a client-server application to send commands to the camera/s

#### Hardware

- Setup 1: camera on the RP arm extending from TIM
- Setup 2: multiple cameras on an adjustable vertical metal structure fixed on the CERNbot
- Dataset

high-definition pictures in LHC, TT1, SPS

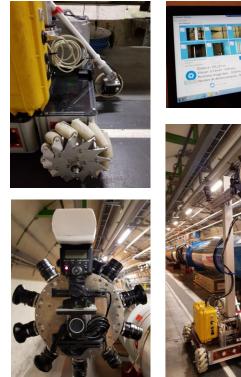



#### TIM

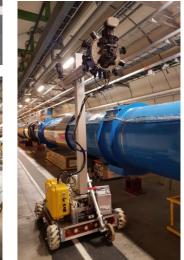




### Images from the 3-camera setup



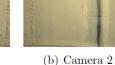

(g) C1, Point A (h) C1, Point B (i) C1, Point C




### **Commercial system**

- during continuous market research, we identified commercial camera system purposely built for inspections
- this system's package features:
  - larger field of view (ideally fulltunnel cross-section)
  - synchronisation of multiple cameras and flash lights via hardware
  - better 3D reconstruction (automating 3D reconstruction)










### Images from the demo test in the LHC Tunnel





(a) Camera 1



(e) Camera 5



(i) Camera 9



(f) Camera 6

(j) Camera 10



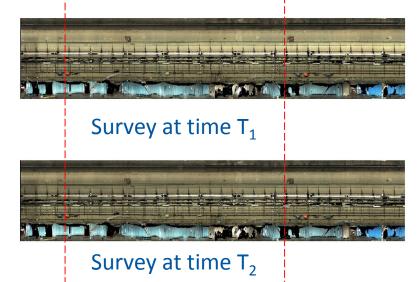
(k) Camera 11

(c) Camera 3

(g) Camera 7



(d) Camera 4




(h) Camera 8





#### (l) Camera 12



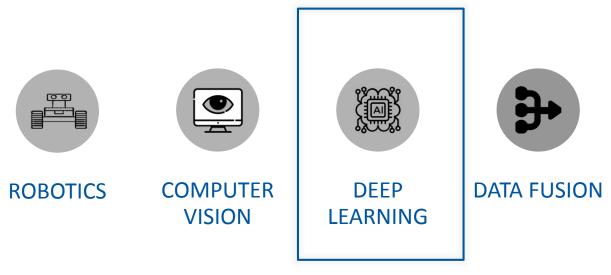


## Outline

- Motivation
- Robotics at CERN
- Monitoring solution
  - Data Acquisition
  - Anomaly Defect Detection
  - Change Detection
  - Visualization for surface documentation
- Ongoing and future work
- Conclusion



# Anomaly Defect Detection example: **Crack Detection**

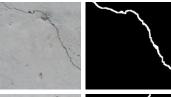

- early works use image processing techniques such as thresholding, mathematical morphology and edge detection
- these rule-based approaches cannot overcome inherent challenges associated with crack images :
  - difficult topology of cracks
  - diversity of surface texture
  - inhomogeneity of cracks
  - background complexity and inference of objects with similar shape/texture to cracks such as joints
- a better approach is to use pattern recognition and/or machine learning techniques

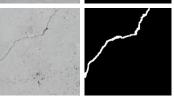






### SHM Structural Health Monitoring





### an even better approach !



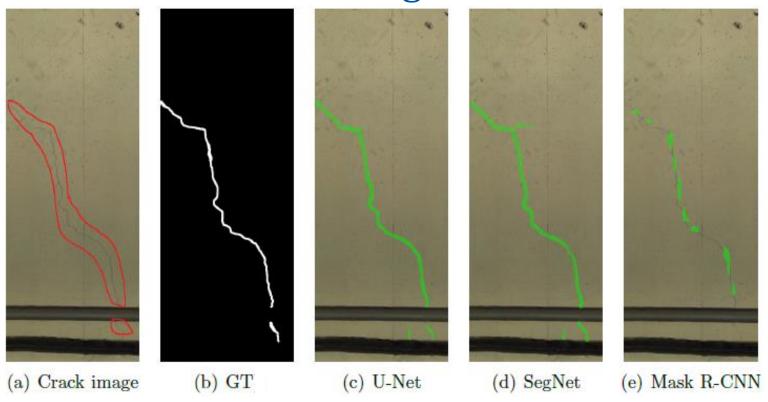
## Crack localisation using deep learning

- this work uses state of the art deep learning models
- built a ground-truth datasets
  - from a standard dataset (SDNET)
  - https://digitalcommons.usu.edu/all\_datasets/48/
  - from images captured in the LHC tunnel
- Instance Segmentation
  - Mask R-CNN
- Semantic segmentation
  - U-Net
  - SegNet better due to limited training datasets







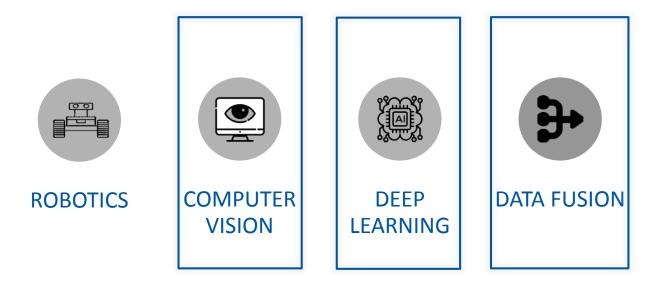

### Detection results on images from **SDNET** dataset





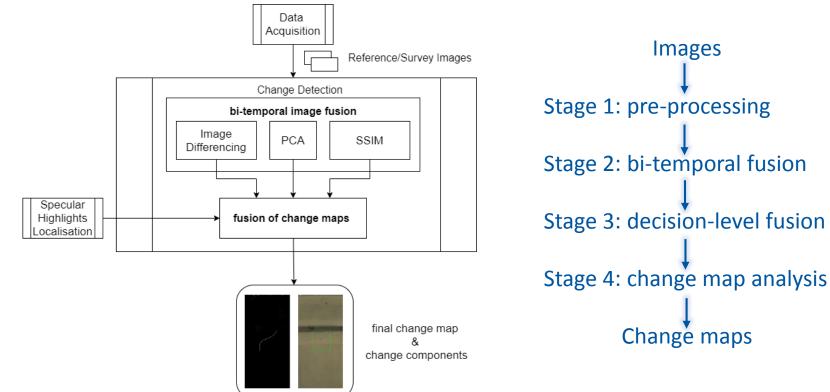
### Detection results on images from LHC dataset





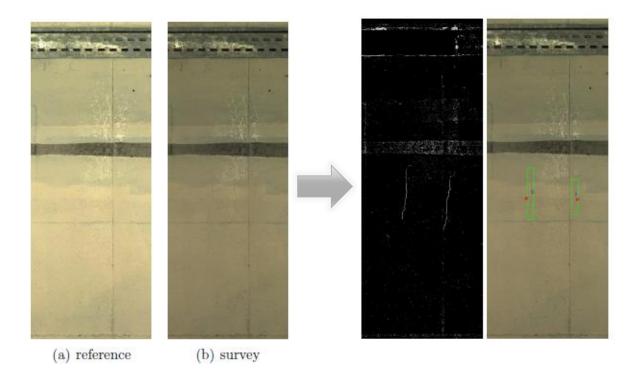

## Outline

- Motivation
- Robotics at CERN
- Monitoring solution
  - Data Acquisition
  - Anomaly Defect Detection
  - Change Detection
  - Visualization for surface documentation
- Ongoing and future work
- Conclusion



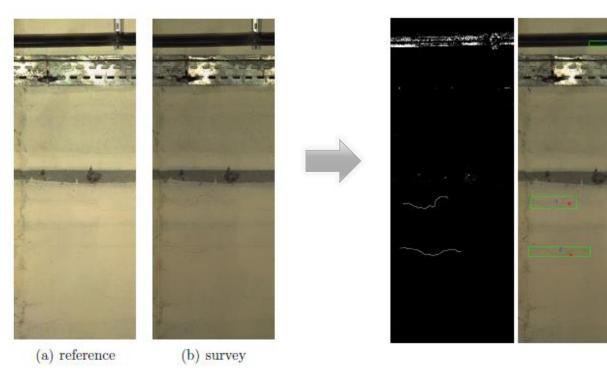

### SHM Structural Health Monitoring






### Change detection flow diagram






#### Example 1





#### Example 2





### Added benefits

- Less personnel presence in the tunnel -- ROBOTICS
- Shorter inspection times
- COMPUTER VISION &
  Objective inspection -- DEEP LEARNING ALGORITHMS
- In addition to defect detection it offers a means of monitoring the structural health -- CHANGE DETECTION

#### Reliable detection -- DATA FUSION



### Application of the solution in other environments



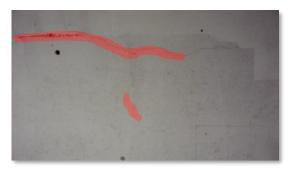


### **Software - Code Repositories**

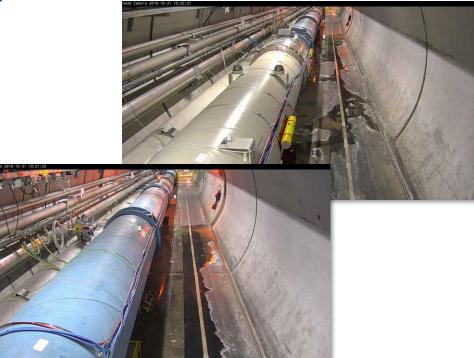
Change Detection - CACI\_Computer\_Aided\_Change\_Identifier https://gitlab.cern.ch/mro/robotics/tunnel-structure-inspection/caci

#### Crack Detection

- Mask R-CNN general\_mrcnn https://gitlab.cern.ch/mro/robotics/tunnel-structure-inspection/generalmaskrcnn
- Semantic segmentation keras\_segmentation https://gitlab.cern.ch/mro/robotics/tunnel-structure-inspection/kerassegmentation


#### Specular highlights detection

- (experimental, no final results) using deeplab <u>https://gitlab.cern.ch/mro/robotics/tunnel-structure-inspection/specularhighlightsdetection</u>
- Semantic segmentation (same as crack detection) keras\_segmentation
  <a href="https://gitlab.cern.ch/mro/robotics/tunnel-structure-inspection/kerassegmentation">https://gitlab.cern.ch/mro/robotics/tunnel-structure-inspection/kerassegmentation</a>
- Thermal camera interface ThermoVis (also a class in the CRF) <u>https://gitlab.cern.ch/mro/robotics/libraries/thermovis</u>
- Nikon camera control (using Nikon SDK and their sample code) https://gitlab.cern.ch/mro/robotics/libraries/nikoncamerascontrol




### Example of anomaly detected





Example of crack found using vision based machine learning techniques



#### Example of water leak found by TIM2 during TS3 2018



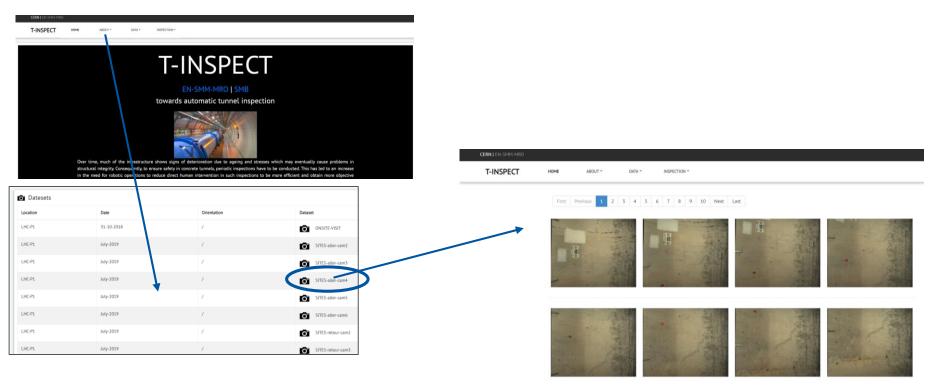
## Outline

- Motivation
- Robotics at CERN
- Monitoring solution
  - Data Acquisition
  - Anomaly Defect Detection
  - Change Detection
  - Visualization for surface documentation
- Ongoing and future work
- Conclusion




## Webpage

http://test-tinspect.web.cern.ch/

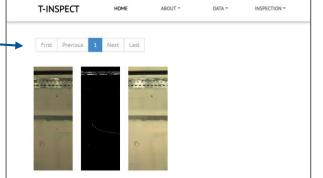



### **General information pages**





### Image datasets






### **Change Detection results**

| Change Detectio | Samples                             |                       |                  |             |        |  |  |
|-----------------|-------------------------------------|-----------------------|------------------|-------------|--------|--|--|
| ocation         | Date 1                              | Date 2                | Dataset          |             |        |  |  |
| LHC-P1          | July-2019                           | July-2019             | SIMULATION-SITES |             |        |  |  |
|                 |                                     |                       |                  |             |        |  |  |
|                 | CERN   EN-SMM-MRO<br>T-INSPFCT HOME | ABOUT - DATA + INSPEC | TION *           |             |        |  |  |
|                 |                                     |                       | ПОМ -            | CERN   EN-S | MM-MRD |  |  |

| DCUM start | DCUM end | Images |
|------------|----------|--------|
| 268.66     | 269.16   | (Ci    |
| 269.16     | 269.66   | Ø      |
| 89.66      | 270.16   | Ø      |
| 70.16      | 270.66   | Ø      |
| 270.66     | 271.16   | Ō      |

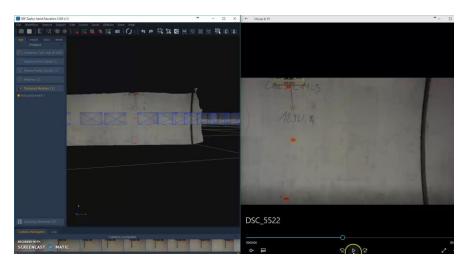




Section-6

Section-6

### Thermal and RDGB-D images


| Location       | Dutaset                                       |
|----------------|-----------------------------------------------|
| ЦНС            |                                               |
| LHC            | Õ                                             |
| LHC            | Ø                                             |
| CERN   EN-SMM- | MRO                                           |
| T-INSPEC       | T HOME ABOUT ~ DATA ~ INSPECTION ~            |
|                | First Previous 1 2 3 4 5 6 7 8 9 10 Next Last |
|                |                                               |
|                | ик                                            |



### 3D and VR



#### 3D and VR models for better contextualization











### 3D models on the web-page

| CERN   EN-SMM-MRO |      |         |        |              |
|-------------------|------|---------|--------|--------------|
| T-INSPECT         | HOME | ABOUT - | DATA - | INSPECTION - |
|                   |      |         |        |              |
|                   |      |         |        |              |
|                   |      |         |        |              |
|                   |      |         |        |              |
|                   |      |         |        |              |
|                   |      | •       |        |              |
|                   |      |         |        |              |
|                   |      |         |        |              |
|                   |      |         |        |              |
|                   |      |         |        |              |
|                   |      |         |        |              |
|                   |      |         |        |              |
|                   |      |         |        |              |
|                   |      |         |        |              |



### **Publication contributions**

[published]

- 1. Tunnel inspection using photogrammetric techniques and image processing: A review, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 144, 2018.
- 2. A comprehensive virtual reality system for tunnel surface documentation and structural health monitoring, 2018 IEEE International Conference on Imaging Systems and Techniques (IST), Krakow, 2018.
- 3. Automatic Crack Detection using Mask R-CNN, 11th International Symposium on Image and Signal Processing and Analysis (ISPA), Dubrovnik, Croatia, 2019.
- 4. VR-SHM A structural health monitoring tool to assist crack detection using deep learning and virtual reality, Sustainable Built Environment conference, Malta, 2019

[under review]

- 1. Specular highlights detection using a U-Net based deep learning architecture, 2020 IEEE International Conference on Image Processing (ICIP)
- 2. Automatic crack detection using deep learning models a comparative analysis, Automation in Construction
- 3. Tunnel structural health monitoring using a computer vision and data fusion change detection solution, Image and Vision Computing Journal

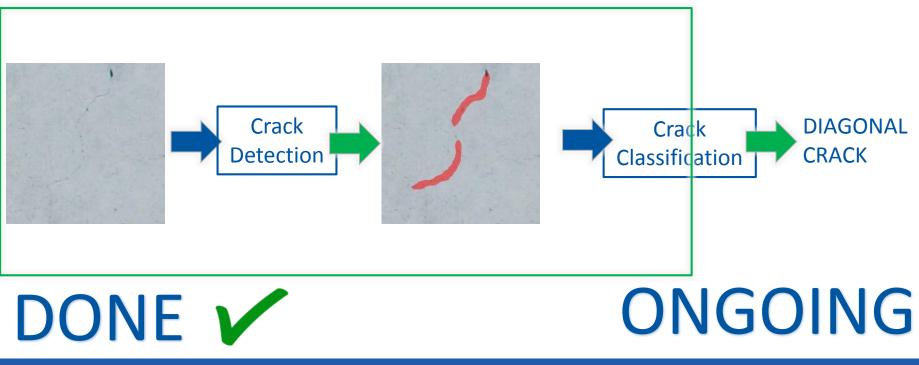


## Outline

- Motivation
- Robotics at CERN
- Monitoring solution
  - Data Acquisition
  - Anomaly Defect Detection
  - Change Detection
  - Visualization for surface documentation
- Ongoing and future work
- Conclusion



#### **Crack classification**




#### From crack detection to crack classification.....

- > crack detection can be used as a pre-processing stage to crack classification
- once crack's bounding boxes are identified, properties such as, width/length/moments of the contours can be extracted to get the directionality
- these can then be used:
  - via rule-based conditions such as if length > width by a certain amount then it is a vertical crack (just as an example)
  - to implement a more accurate and generalised way of classification by using these properties as a feature vector and then use pattern recognition techniques or machine learning, through classification networks such as SVMs
- deep learning principle can also be used for classification



#### From crack detection to crack classification.....

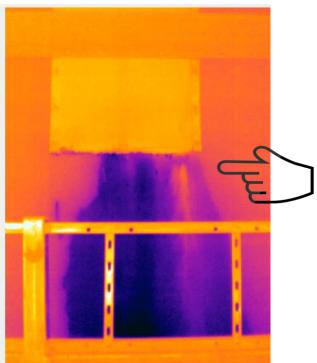




#### Thermal imagery Data Fusion



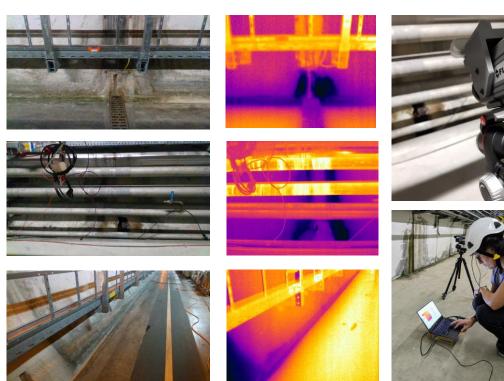
## Thermal Imagery for in-depth inspection


non-contact technology which measures infrared wavelengths emitted from objects Work done

developed an interface that:

- captures images / videos
- saves the temperatures in °C

data acquisition in TT1, LHC PT3








### Thermal Imagery for in-depth inspection







# Thermal – Visible image fusion

- TIR images distinguish targets from their backgrounds based on the radiation difference, which works well in all-weather and all-day/night conditions
- Visible images provide texture details with high spatial resolution and definition in a manner consistent with the human visual system



Fusion of these two types of images combines their individual properties and can be beneficial for in-depth inspection to detect water leakages, deposition etc.



#### VR



# Augment information to the VR models





### Remote measuring from VR







to monitor the **full tunnel lining** cross-section

- additional hardware which is currently in procurement stages
- to ensure monitoring speed and personnel safety



## Outline

- Motivation
- Robotics at CERN
- Monitoring solution
  - Data Acquisition
  - Crack Detection
  - Change Detection
  - Visualization for surface documentation
- Ongoing and future work
- Conclusion



## What has been done so far

Reduce inspection time



- Image capture in real-time using on-board processors during technical stops, inspection process executed offline on powerful computers, to flag issues within a few hours
- Reduce personnel presence in tunnels
- Implementation of remote image capturing on moving robots
- □ Objective inspection, to reduce report subjectivity
- Anomaly defect (cracks) detection using deep learning



## What has been done so far

Change monitoring



- Reliable change detection using image processing and data fusion
- Pre-processing and post-processing stages to reduce false alarms using image processing and deep learning techniques
- Visualization to aid tunnel surface documentation and analysis
- Experimentation with the use of 3D and VR models for their use in tunnel surface documentation, inspection and analysis
- Experimentation with the use of **thermal imagery** for in-depth inspection



#### Man Power needed for the possible future work

- Future manpower needed to have a fully operational device: mainly hardware integration tasks on existing robotic platforms + testing and commissioning of the novel 360 deg camera system under procurement.
  - ✓ 2 FTE (Robotics/Integration Engineer) + 1 TECH





### Thanks a lot

