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Plan

♦ What are jets?

♦ What are “boosted” jets ? Why are they challenging (jet substructure)?

♦ Future collider: the challenge of searching for new physics with   

     superboosted jets.

(60-80% of the problem can be resolved semi-conventionally but I won’t discuss 
it - just attempt to explain the issue, more in Sanmay’s talk)



(naively: QCD jets are massless while top jets ~ mt)

Jets & New Physics
♦ ”Jets” in cosmic rays described in:  Edwards et al., Phil. Mag. (1957)

♦ Looking for new physics in “energetic” jets has a long tradition:
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What are jets ?
♦ Jets: spray of particles (stable hadrons, pions, protons, neutrons) 

roughly moving in same directions. Quarks & gluons? They quite don’t exist[Jets]

jet

jet

q

q

π, K, p, ...

Giving a pattern of hadrons that “remembers” the gluon branching
Hadrons mostly produced at small angle wrt qq̄ directions or with low energy

Gavin Salam (Cern/Princeton/Paris) Hunting for TeV physics at the LHC 2010-12-01 25 / 38

colinear particles



♦States with one or two gluons of E/2 on top of each others
are identical; probability to emit a colinear gluon diverges =>  
                                                                colinear singularities: 
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Why jets are unavoidable in QCD ?

(QCD=quantum-chromodynamics, the theory of the strong force)  

♦Quarks (matter constituents) & gluons (QCD-force mediators) are  
the basic members of the QCD family => cause jets to appear.



jet mass & jet substructure QCD story 

♦ Jet mass definition (say for 2-particles jet):  m2
j ∼ E1E2 θ2

12

♦ So: if you produce a fundamental quark/gluon it would always 
interpolate a narrow jet (radiate spray of colinear particles, hadrons)

a) q

q

b) q

q

c) q

q

π, K, p, ...

d)

Fig. 5: Emission pattern from a qq̄ event, with first a single gluon (a), then multiple emissions of gluons both
from the qq̄ pair and from the previously emitted gluons (b), followed by some process, ‘hadronization’, that
causes hadrons to be produced from the gluons, giving an event (c), that structurally resembles a real event (d)
(e+e− → Z →hadrons at LEP in the OPAL detector)

which, numerically, corresponds to 〈Ng〉 $ 2. This is neither small numerically, nor parametrically
(∼ 1/αs). Does this render perturbation completely useless for anything other than total cross sections?

We can follow two possible avenues to help answer this question. One approach is to calculate
the next order, and see what structure it has. Alternatively we can ask whether there are final-state
observables that have a better-behaved perturbative series than ‘the mean number of gluons’.

2.3.1 Gluon (and hadron) multiplicity
Once one gluon has been emitted, it can itself emit further gluons. To understand what the gluon multi-
plicity might look like to higher orders, it’s useful to write down the general pattern of emission of a soft
gluon both from a quark and from a gluon, which is essentially independent of the process that produced
the ‘emitter’:

p

k
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π

dE

E

dθ

θ
, (26a)

p

k
θ $

2αsCA

π

dE

E

dθ

θ
. (26b)

These expressions are valid when the emitted gluon is much lower in energy than the emitter, k & p,
and when the emission angle θ is much smaller than the angle between the emitter and any other parton
in the event (this is known as the condition of angular ordering [21]). The structure of emission of a soft
gluon is almost identical from a quark and from a gluon, except for the substitution of the CF = 4/3
colour factor in the quark case with the CA = 3 colour factor in the gluon case.

Since quarks and gluons emit in similar ways, every gluon that is emitted from the quark can itself
emit further gluons, and so forth. Most of the emissions will either be in almost the same direction as the
original quark (due to the collinear divergence) and/or be soft. This is represented in Figs. 5(a) and (b)
(for simplicity we’ve not shown gluons splitting to qq̄ pairs, which also occurs, with just a collinear
divergence). This still only gives a description of events in terms of quarks and gluons, whereas real
events consist of hadrons. Though hadronization, the transition from quarks and gluon to hadrons is not
something that we know how to calculate from first principles, one idea that has had some success is
Local Parton Hadron Duality (LPHD) (see, e.g., Ref. [22]). It states that after accounting for all gluon
and quark production down to scales ∼ Λ, the transition from partons to hadrons is essentially local in
phase space. Thus the hadron directions and momenta will be closely related to the partons’, and the
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narrow: its mass << original energy:

t-angular info’ encoded in decay products

• When other quarks produced:    

• Tops decay before hadronize:    

cone of opening 
angle R

E1

E2

θ12(

Measuring jet mass requires looking

 inside the jet = jet substructure 
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colour factor in the quark case with the CA = 3 colour factor in the gluon case.

Since quarks and gluons emit in similar ways, every gluon that is emitted from the quark can itself
emit further gluons, and so forth. Most of the emissions will either be in almost the same direction as the
original quark (due to the collinear divergence) and/or be soft. This is represented in Figs. 5(a) and (b)
(for simplicity we’ve not shown gluons splitting to qq̄ pairs, which also occurs, with just a collinear
divergence). This still only gives a description of events in terms of quarks and gluons, whereas real
events consist of hadrons. Though hadronization, the transition from quarks and gluon to hadrons is not
something that we know how to calculate from first principles, one idea that has had some success is
Local Parton Hadron Duality (LPHD) (see, e.g., Ref. [22]). It states that after accounting for all gluon
and quark production down to scales ∼ Λ, the transition from partons to hadrons is essentially local in
phase space. Thus the hadron directions and momenta will be closely related to the partons’, and the
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Fig. 5: Emission pattern from a qq̄ event, with first a single gluon (a), then multiple emissions of gluons both
from the qq̄ pair and from the previously emitted gluons (b), followed by some process, ‘hadronization’, that
causes hadrons to be produced from the gluons, giving an event (c), that structurally resembles a real event (d)
(e+e− → Z →hadrons at LEP in the OPAL detector)

which, numerically, corresponds to 〈Ng〉 $ 2. This is neither small numerically, nor parametrically
(∼ 1/αs). Does this render perturbation completely useless for anything other than total cross sections?

We can follow two possible avenues to help answer this question. One approach is to calculate
the next order, and see what structure it has. Alternatively we can ask whether there are final-state
observables that have a better-behaved perturbative series than ‘the mean number of gluons’.

2.3.1 Gluon (and hadron) multiplicity
Once one gluon has been emitted, it can itself emit further gluons. To understand what the gluon multi-
plicity might look like to higher orders, it’s useful to write down the general pattern of emission of a soft
gluon both from a quark and from a gluon, which is essentially independent of the process that produced
the ‘emitter’:
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emit further gluons, and so forth. Most of the emissions will either be in almost the same direction as the
original quark (due to the collinear divergence) and/or be soft. This is represented in Figs. 5(a) and (b)
(for simplicity we’ve not shown gluons splitting to qq̄ pairs, which also occurs, with just a collinear
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something that we know how to calculate from first principles, one idea that has had some success is
Local Parton Hadron Duality (LPHD) (see, e.g., Ref. [22]). It states that after accounting for all gluon
and quark production down to scales ∼ Λ, the transition from partons to hadrons is essentially local in
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Measuring jet mass requires looking

 inside the jet = jet substructure 



So far have learned that:

1. When we produce an energetic quark or gluon it generates       
a collimated spray of particles, roughly denoted as a jet.

2. To measure the jet mass we need to look inside the jet;
       Jet mass => jet substructure info.

Why do we care? New physics searches 

In colliders, energy frontier, we use jet mass (substructure) to 
search for new particles, where QCD events => main background.



(Pseudo realistic) Ex. how to search for new massive particles

♦ Is the Higgs behind the mass of all particles? For instance b-quarks? To 

answer, need to observe the decay of the Higgs to 2-b’s, !H → b̄b

m2
H ≃ m2

bb̄ ≃ E1E2(1 − cos θ12) ∼ (125GeV)2

the b’s are not colinear,  is not small
(If H is at rest then )

θ12
θ12 = π



t‘ t
W

W

b

q

q

q-

q-

b

W

tt‘

q-

q

q-
q

As mt‘ ≫ mH outgoing Higgs is ultra-relativistic, its decay products 

collimate => H-jets. 

Similar to ordinary
2-jet QCD 

process hard 
to observe

g

g
g

q-

q
q-
q
q

decay of heavy partner t‘

♦ We have solid motivation to think that there is an ultra massive 

particle t’ that decay to H and other massive particles.

H b

b

Future: searching for new heavy particles

θbb̄ ∼ mH /mt′ ≪ 1

θbb̄)

Jet substructure analysis required to separate signal from QCD background!

golden but rare
boring but common



How difficult of a problem is it ? 
Hadronic shower size

♦ The opening angle of boosted Higgs decay product, 
 , for  GeV is of O(2%).θbb̄ ∼ mH /mt′ mt′ ∼ 10000

♦ Hadronic calorimeter is built to contain all hadrons produced. 

♦ Hadronicaly decaying H - jets produce energetic hadrons:
For H jet with E~ 10000 GeV - 

2 leading hadrons energies = 1200 (2700), 700 (15000) GeV; 

2 leading “stable”-neutrals energies = 600 (1300), 200 (500) GeV. 



Pheno' of hadronic shower size

11

♦ Long. & trans. size of average/fluctuation shower sizes is:

L95% , T95%: depth,breadth within 95% of hadronic cascade-E deposited. 

λA: nuclear interaction length. 

2

sion are very energetic. For example, for W jets with
pT near 3 (10) TeV, the three leading long-lived hadrons
carry on average energies of 1200 (2700), 700 (1500), 490
(1100) GeV, and the three leading neutral ones carry 600
(1330), 210 (470), 80 (190) GeV [10]. Similar numbers
are obtained for QCD jets. For hadrons in this range
of hundreds of GeV, the dependence on the energy and
species is rather mild [7, 11, 12]. The 95% longitudinal
containment of hadronic shower cascades, L95%, which is
the average calorimeter depth within which 95% of the
hadronic cascade energy will be deposited, is described
in terms of the nuclear interaction length, �A, as [7]

L95% ⇡ (6.2 + 0.8 ln(E/100 GeV))�A . (1)

The 95% lateral containment for hadronic cascades, d95%,
can also be expressed in terms of �A [7],

d95% ⇡ �A . (2)

Smaller interaction lengths are obtained for ma-
terials with larger atomic weights, with �A ⇡
10, 11, 15, 17, 17, 40 cm for tungsten, uranium, copper,
iron, lead, and aluminum respectively, while scintillator
materials typically have larger interactions lengths. Ef-
fective interaction lengths of HCALs (composed of scintil-
lator and stopping material) thus cannot be shorter than
⇠ 10 cm, with typical e↵ective interaction lengths, e.g. in
ATLAS and CMS, and the prototype future calorimeter
CALICE [12], being 20–30 cm.

One can then define a minimal scale,

dhad ⇡ d95% , (3)

below which the perturbative jet information becomes
increasingly unresolvable in the HCAL due to overlap
between the hadronic showers (see, e.g., Ref. [13]). Thus,
for any HCAL at a radial distance rHCAL from the beam
axis, one can define a typical minimal opening angle ✓had
below which jet substructure will be washed out,

✓had ⇡ dhad
rHCAL

⇡ 0.1⇥ �HCAL

20 cm
⇥ 2m

rHCAL

. (4)

While it seems very challenging to improve upon �HCAL,
it is in principle possible to decrease ✓had by increasing
the radial distance, rHCAL. A typical opening angle of a
boosted t or W jet is ✓t,W = 2mt,W /pT . Thus, assuming
�HCAL = 20 cm, to resolve the substructure of a 3 (10)
TeV jet the HCAL needs to be at a distance of at least
rHCAL ⇡ 2, 4 (6, 12) meters from the beam pipe. Note
that it means that superboosted jets might become rel-
evant already at the LHC, since the active inner radius
of the HCAL is 2.3 meters for ATLAS and 1.8 meters
for CMS. The HCAL shower size may or may not be the
most important limitation, since an angular size of about
0.1 describes also the granularity of the ATLAS and CMS
HCALs. However, future colliders are expected to have
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FIG. 1. Energy fractions carried by long-lived neutral hadrons
in boosted W jets (solid blue) and QCD jets (dashed red) for
pT = 3 TeV (left) and 10 TeV (right).

much better HCAL granularities (see, e.g., Ref. [11]), so
the HCAL shower size will become the leading obsta-
cle. While scaling up the detectors would eliminate the
problem, this would be very costly, not only due to the
increased HCAL volume but also due to the increased
volume of the magnetic field for the muon detector. This
will likely make such a solution unrealistic.

Limitations of neutralless jet substructure

variables.—The results obtained above lead to the con-
clusion that in the future the energy frontier will almost
unavoidably have to deal with jets in the superboosted
regime. In this regime, jet substructure analyses would
have to rely solely on information obtained by the tracker
and the electromagnetic calorimeter (ECAL). Tracker or
tracker+ECAL based jet substructure methods have al-
ready been explored in the literature in the context of
boosted tops [14–16] and W ’s and Z’s [16]. Here we take
a somewhat orthogonal path and attempt to characterize
the unavoidable fluctuations that arise in (practically all)
jet substructure variables due to the spatially unresolv-
able energy depositions of the neutral hadrons.

In Fig. 1, we show the fraction of energy carried by
neutrons, KL’s, as well as all other neutral hadrons that
due to a large boost happen to decay farther than 2 m
from the beam axis, for boosted W and QCD jets with
pT = 3 and 10 TeV. These results are based on a simu-
lation of WW and QCD events in 100 TeV pp collisions
using Pythia 8.205 [10] (with the default settings) in-
terfaced with FastJet [17]. Here and in the following,
we use as our defaults anti-kT jets [18] with cone size
R = 3mW /pT = 0.08 (0.024). Smaller cones would fre-
quently fail to capture the W decay products [19], while
larger cones would increase the QCD background at mW

since the average mass of a QCD jet is hmJi ⇠ ↵s pTR,
with the peak of the mJ distribution (the Sudakov peak)
being somewhat lower. Below, we shall discuss additional
impacts of using larger cones. The mean, hfN i, and stan-
dard deviation, �fN , of the energy fraction taken by the
neutrals in the 3 (10) TeV boosted W and QCD jets are

T95% ⇡ �A;

λA ≈ 10,11,15,17,17,40 cm for tungsten, uranium, copper, iron, lead & aluminum; 

(with typical lengths, in ATLAS , CMS & future cal [CALICE] being 20–30 cm)
Leroy & Rancoita (00); Fabjan & Gianotti (03); Akchurin & Wigmans (08); CALICE Col., Adloff et al. (13) 
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♦ Smaller scales cannot be resolved in the hadronic cal. (HCAL)!

(typical lengths, in ATLAS , CMS & future cal [CALICE] being 20–30 cm)

♦ For any given detector exists minimal angular scale:

2

sion are very energetic. For example, for W jets with
pT near 3 (10) TeV, the three leading long-lived hadrons
carry on average energies of 1200 (2700), 700 (1500), 490
(1100) GeV, and the three leading neutral ones carry 600
(1330), 210 (470), 80 (190) GeV [10]. Similar numbers
are obtained for QCD jets. For hadrons in this range
of hundreds of GeV, the dependence on the energy and
species is rather mild [7, 11, 12]. The 95% longitudinal
containment of hadronic shower cascades, L95%, which is
the average calorimeter depth within which 95% of the
hadronic cascade energy will be deposited, is described
in terms of the nuclear interaction length, �A, as [7]

L95% ⇡ (6.2 + 0.8 ln(E/100 GeV))�A . (1)

The 95% lateral containment for hadronic cascades, d95%,
can also be expressed in terms of �A [7],

d95% ⇡ �A . (2)

Smaller interaction lengths are obtained for ma-
terials with larger atomic weights, with �A ⇡
10, 11, 15, 17, 17, 40 cm for tungsten, uranium, copper,
iron, lead, and aluminum respectively, while scintillator
materials typically have larger interactions lengths. Ef-
fective interaction lengths of HCALs (composed of scintil-
lator and stopping material) thus cannot be shorter than
⇠ 10 cm, with typical e↵ective interaction lengths, e.g. in
ATLAS and CMS, and the prototype future calorimeter
CALICE [12], being 20–30 cm.

One can then define a minimal scale,

dhad ⇡ d95% , (3)

below which the perturbative jet information becomes
increasingly unresolvable in the HCAL due to overlap
between the hadronic showers (see, e.g., Ref. [13]). Thus,
for any HCAL at a radial distance rHCAL from the beam
axis, one can define a typical minimal opening angle ✓had
below which jet substructure will be washed out,

✓had ⇡ dhad
rHCAL

⇡ 0.1⇥ �HCAL

20 cm
⇥ 2m

rHCAL

. (4)

While it seems very challenging to improve upon �HCAL,
it is in principle possible to decrease ✓had by increasing
the radial distance, rHCAL. A typical opening angle of a
boosted t or W jet is ✓t,W = 2mt,W /pT . Thus, assuming
�HCAL = 20 cm, to resolve the substructure of a 3 (10)
TeV jet the HCAL needs to be at a distance of at least
rHCAL ⇡ 2, 4 (6, 12) meters from the beam pipe. Note
that it means that superboosted jets might become rel-
evant already at the LHC, since the active inner radius
of the HCAL is 2.3 meters for ATLAS and 1.8 meters
for CMS. The HCAL shower size may or may not be the
most important limitation, since an angular size of about
0.1 describes also the granularity of the ATLAS and CMS
HCALs. However, future colliders are expected to have
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FIG. 1. Energy fractions carried by long-lived neutral hadrons
in boosted W jets (solid blue) and QCD jets (dashed red) for
pT = 3 TeV (left) and 10 TeV (right).

much better HCAL granularities (see, e.g., Ref. [11]), so
the HCAL shower size will become the leading obsta-
cle. While scaling up the detectors would eliminate the
problem, this would be very costly, not only due to the
increased HCAL volume but also due to the increased
volume of the magnetic field for the muon detector. This
will likely make such a solution unrealistic.

Limitations of neutralless jet substructure

variables.—The results obtained above lead to the con-
clusion that in the future the energy frontier will almost
unavoidably have to deal with jets in the superboosted
regime. In this regime, jet substructure analyses would
have to rely solely on information obtained by the tracker
and the electromagnetic calorimeter (ECAL). Tracker or
tracker+ECAL based jet substructure methods have al-
ready been explored in the literature in the context of
boosted tops [14–16] and W ’s and Z’s [16]. Here we take
a somewhat orthogonal path and attempt to characterize
the unavoidable fluctuations that arise in (practically all)
jet substructure variables due to the spatially unresolv-
able energy depositions of the neutral hadrons.

In Fig. 1, we show the fraction of energy carried by
neutrons, KL’s, as well as all other neutral hadrons that
due to a large boost happen to decay farther than 2 m
from the beam axis, for boosted W and QCD jets with
pT = 3 and 10 TeV. These results are based on a simu-
lation of WW and QCD events in 100 TeV pp collisions
using Pythia 8.205 [10] (with the default settings) in-
terfaced with FastJet [17]. Here and in the following,
we use as our defaults anti-kT jets [18] with cone size
R = 3mW /pT = 0.08 (0.024). Smaller cones would fre-
quently fail to capture the W decay products [19], while
larger cones would increase the QCD background at mW

since the average mass of a QCD jet is hmJi ⇠ ↵s pTR,
with the peak of the mJ distribution (the Sudakov peak)
being somewhat lower. Below, we shall discuss additional
impacts of using larger cones. The mean, hfN i, and stan-
dard deviation, �fN , of the energy fraction taken by the
neutrals in the 3 (10) TeV boosted W and QCD jets are

(muon-cal+magnets => hard to imagine rHCAL  > 1-2 meters)
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♦ Superboosted jets: ultra energetic jets where perturbative 
substructure cannot be probed within the HCAL:

EH > 2500 GeV

�Rsuperboost ⇠ 2mW,Z,H,t

pT

. ✓had ⇠ 0.1θsuperboost ∼
2mH

EH

H b

b

single 0.1 x 0.1 
hadronic Cal. cell
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Figure 2: Dependence of the asymmetries for the LHC on the lepton pt for three di↵erent scale

choices, calculated by POWHEG. The left and right panel show Ac and Al respectively and

middle one shows the ratio Al/Ac. These plots show the ideal SM scenario where no cuts have

been applied.

3

Conclusions

♦ Finite hadronic shower size implies that jet substructure of very 

energetic jet is inaccessible via HCAL = superboosted regime.

♦ Fluct.: O(15%) information carried by “stable” neutrals is lost.

Dependence on how asymmetric are the jet subcomponents.
14

♦ Search for heavy new particles => boosted Higgs, with hadronic 

final states that are collimated.

♦ Some information can be recovered by “tracker” + 

electromagnetic calorimeter.

More in Sanmay’s talk
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♦ Superboosted jet substructure, who cares? 

   Can probe jet inner energy deposition via tracker + EM Cal.

♦ Neutral-“stable” hadrons not visible to tracker + EM Cal.
Separate momenta of KL,S , n ... is inaccessible.

Katz, Son & Tweedie (10); Son, Spethmann & Tweedie (12); Schaetzel & Spannowsky; 
Chang, Procura, Thaler & Waalewijn x2 (13); Larkoski, Maltoni & Selvaggi; Spannowsky & Stoll (15) 

Bressler, Flacke, Kats, Lee & GP (15)

2

sion are very energetic. For example, for W jets with
pT near 3 (10) TeV, the three leading long-lived hadrons
carry on average energies of 1200 (2700), 700 (1500), 490
(1100) GeV, and the three leading neutral ones carry 600
(1330), 210 (470), 80 (190) GeV [10]. Similar numbers
are obtained for QCD jets. For hadrons in this range
of hundreds of GeV, the dependence on the energy and
species is rather mild [7, 11, 12]. The 95% longitudinal
containment of hadronic shower cascades, L95%, which is
the average calorimeter depth within which 95% of the
hadronic cascade energy will be deposited, is described
in terms of the nuclear interaction length, �A, as [7]

L95% ⇡ (6.2 + 0.8 ln(E/100 GeV))�A . (1)

The 95% lateral containment for hadronic cascades, d95%,
can also be expressed in terms of �A [7],

d95% ⇡ �A . (2)

Smaller interaction lengths are obtained for ma-
terials with larger atomic weights, with �A ⇡
10, 11, 15, 17, 17, 40 cm for tungsten, uranium, copper,
iron, lead, and aluminum respectively, while scintillator
materials typically have larger interactions lengths. Ef-
fective interaction lengths of HCALs (composed of scintil-
lator and stopping material) thus cannot be shorter than
⇠ 10 cm, with typical e↵ective interaction lengths, e.g. in
ATLAS and CMS, and the prototype future calorimeter
CALICE [12], being 20–30 cm.

One can then define a minimal scale,

dhad ⇡ d95% , (3)

below which the perturbative jet information becomes
increasingly unresolvable in the HCAL due to overlap
between the hadronic showers (see, e.g., Ref. [13]). Thus,
for any HCAL at a radial distance rHCAL from the beam
axis, one can define a typical minimal opening angle ✓had
below which jet substructure will be washed out,

✓had ⇡ dhad
rHCAL

⇡ 0.1⇥ �HCAL

20 cm
⇥ 2m

rHCAL

. (4)

While it seems very challenging to improve upon �HCAL,
it is in principle possible to decrease ✓had by increasing
the radial distance, rHCAL. A typical opening angle of a
boosted t or W jet is ✓t,W = 2mt,W /pT . Thus, assuming
�HCAL = 20 cm, to resolve the substructure of a 3 (10)
TeV jet the HCAL needs to be at a distance of at least
rHCAL ⇡ 2, 4 (6, 12) meters from the beam pipe. Note
that it means that superboosted jets might become rel-
evant already at the LHC, since the active inner radius
of the HCAL is 2.3 meters for ATLAS and 1.8 meters
for CMS. The HCAL shower size may or may not be the
most important limitation, since an angular size of about
0.1 describes also the granularity of the ATLAS and CMS
HCALs. However, future colliders are expected to have

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

fN !!"

pr
ob
ab
ili
ty
de
ns
ity

pT " 3 TeV

W
QCD

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

fN !!"
pr
ob
ab
ili
ty
de
ns
ity

pT " 10 TeV

W
QCD

FIG. 1. Energy fractions carried by long-lived neutral hadrons
in boosted W jets (solid blue) and QCD jets (dashed red) for
pT = 3 TeV (left) and 10 TeV (right).

much better HCAL granularities (see, e.g., Ref. [11]), so
the HCAL shower size will become the leading obsta-
cle. While scaling up the detectors would eliminate the
problem, this would be very costly, not only due to the
increased HCAL volume but also due to the increased
volume of the magnetic field for the muon detector. This
will likely make such a solution unrealistic.

Limitations of neutralless jet substructure

variables.—The results obtained above lead to the con-
clusion that in the future the energy frontier will almost
unavoidably have to deal with jets in the superboosted
regime. In this regime, jet substructure analyses would
have to rely solely on information obtained by the tracker
and the electromagnetic calorimeter (ECAL). Tracker or
tracker+ECAL based jet substructure methods have al-
ready been explored in the literature in the context of
boosted tops [14–16] and W ’s and Z’s [16]. Here we take
a somewhat orthogonal path and attempt to characterize
the unavoidable fluctuations that arise in (practically all)
jet substructure variables due to the spatially unresolv-
able energy depositions of the neutral hadrons.

In Fig. 1, we show the fraction of energy carried by
neutrons, KL’s, as well as all other neutral hadrons that
due to a large boost happen to decay farther than 2 m
from the beam axis, for boosted W and QCD jets with
pT = 3 and 10 TeV. These results are based on a simu-
lation of WW and QCD events in 100 TeV pp collisions
using Pythia 8.205 [10] (with the default settings) in-
terfaced with FastJet [17]. Here and in the following,
we use as our defaults anti-kT jets [18] with cone size
R = 3mW /pT = 0.08 (0.024). Smaller cones would fre-
quently fail to capture the W decay products [19], while
larger cones would increase the QCD background at mW

since the average mass of a QCD jet is hmJi ⇠ ↵s pTR,
with the peak of the mJ distribution (the Sudakov peak)
being somewhat lower. Below, we shall discuss additional
impacts of using larger cones. The mean, hfN i, and stan-
dard deviation, �fN , of the energy fraction taken by the
neutrals in the 3 (10) TeV boosted W and QCD jets are

Stable neutrals, Ave & RMS E-fraction [%]: 

3

(in %)

hfW,QCD

N i = 16, 15 (17, 15) , �fW,QCD

N = 15, 13 (15, 13) .
(5)

It implies that tracker+ECAL based jets capture roughly
85% ± 15% of the actual jet energy. For subjets, ob-
tained by reclustering the jet constituents using the anti-
kT algorithm with cone size Rsubjet = (3/4)mW /pT , the
means are similar to that of the whole jet, while the fluc-
tuations are larger — by factors of 1.3–1.4 for each of the
two leading subjets. We note in passing that the neutral
fraction depends on the flavor composition of the boosted
jet partonic origin. This can potentially be used as a dis-
criminator in certain situations. For hadronic W , t and
h ! bb̄ 10 TeV jets, we find

hfW!cs̄, W!ud̄
N i = 21, 14, �fW!cs̄, W!ud̄

N = 16, 14,

hf t!bcs̄, t!bud̄
N i = 18, 14, �f t!bcs̄, t!bud̄

N = 12, 11,

hf h!bb̄
N i = 17, �f h!bb̄

N = 13 . (6)

As is well known, one can apply a global rescaling to
correct for the missing neutral component based on the
total jet energy, EJ , measured in the HCAL. For recent
discussions in the context of boosted jets, see [14, 15].
Jet energy resolution, which for instance in CMS is given
roughly by �(EJ)/EJ ⇡ 1.0/

p
EJ/GeV � 0.05 [20], is

only a minor limitation, since already for EJ & 50 GeV
the associated fluctuations are below 15%. Now we would
like to argue that such a global correction does not com-
pensate for fluctuations in jet substructure variables.
The reason is very simple: jet substructure, by defini-
tion, characterizes some kinematic properties of the jet’s
perturbative constituents, the subjets. However, each
subjet is subject to an independent fluctuation in the
neutral fraction. A global correction cannot cancel the
fluctuations of the individual subjets, f i

N .
Let us consider, for example, the jet mass, which is

among the simplest possible jet substructure variables.
We will show that applying a global correction to the
jet does not reduce the fluctuations. The jet mass for
boosted 2-body hadronic decays of W/Z/h (signal) is
dominated by just the two-prong kinematics, making it
simple to describe. For QCD jets, the mass distribution
depends on the jet cone size. We shall consider two cases
in the context of QCD jets as background for W jets,
for a fixed jet pT : (i) the W mass falls in the tail re-
gion of the QCD jet mass distribution, away from the
Sudakov peak, such that the two-prong approximation
roughly holds (see, for instance, Refs. [21–23]) and (ii)
the W mass is near or below the Sudakov peak, where
the QCD jet mass is partially driven by resummation of
multiple emissions (see, e.g., Refs. [24, 25] and references
therein).

The two-prong kinematics of a narrow jet can be
fully described by its energy, E12 = E1 + E2, mass,
m2

12
= E1E2✓212, and the energy fraction in the softer

parton/subjet, z = E2/E12  1

2
. Without the HCAL,

one measures

m2

12,N/ = (1� f1

N )(1� f2

N )m2

12
, (7)

where the subscript N/ denotes that the neutrals are omit-
ted. We have neglected a possible shift in ✓12 since
the angular resolution of the tracker is very good and
the subjets are very collimated. The global jet correc-
tion accounts for the average fraction of missing neutrals
by rescaling the mass according to m12,corr = m12,N/ ⇥
EJ/EJ,N/ , where EJ,N/ is the energy of all the particles
in the jet that can be measured using the tracker and
ECAL, namely

m12,corr =

P
i EiP

i

�
1� f i

N

�
Ei

m12,N/ , (8)

where the sums are over all the subjets. At linear order in
f1

N , f2

N , and y ⌘ (
P

i Ei � E1 � E2) /
P

i Ei, we obtain

m12,corr �m12

m12

'
✓
1

2
� z

◆
(f1

N � f2

N ) + y f3+

N , (9)

where f3+

N ⌘
P

f i
NEi/

P
Ei, with the sums in f3+

N start-
ing from i = 3. For the mean values of f1,2

N , the correc-
tion is perfect if we neglect the last term and the weak
dependence of f i

N on Ei. Statistical fluctuations lead to
fluctuations in m12,corr �m12 ,

✓
�

✓
m12,corr �m12

m12

◆◆2

' 2

✓
1

2
� z

◆2

(�f1,2
N )2

+ hyi2 (�f3+

N )2 + hf3+

N i2 (�y)2.
(10)

Note that the size of the fluctuations is z dependent. It is
interesting to see that both signal and background events
might benefit from cutting away the low z events as this
would reduce the average fluctuation in the mass.
Let us first consider the case that the QCD jets are

far from the Sudakov peak. Such QCD jets, as well as
boosted W jets, are dominated by the two-prong approx-
imation. In Fig. 2 (top row) we show the distributions of
the truth jet mass, m12, the mass without the neutrals,
m12,N/, as well as the globally corrected one, m12,corr, for
W and QCD jets with pT = 10 TeV. We focus on events
where the mass of the boosted W jets is indeed captured
by the two leading subjets at the truth level by requiring
m12 = 75 ± 5 GeV. For the QCD jets, the two leading
subjets carry more than 75% of the jet energy in about
95% of the cases. The fluctuations of m12,corr relative to
m12 are most significant for low z, as shown in Fig. 3
(left), consistent with the expectation from Eq. (10).
We now turn to examine the case where the jet mass is

in the Sudakov-peak region. For this purpose we use large
jet radii, R = 9mW /pT = 0.24 for 3 TeV jets and R =
15mW /pT = 0.12 for 10 TeV jets. For the W jets, which

pT=3 (10) TeV   
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♦ Tracker+ECAL capture roughly 85% ± 15% of actual jet energy. 

mean (RMS) E-fraction of stable particles [%] : 

3

(in %)

hfW,QCD

N i = 16, 15 (17, 15) , �fW,QCD

N = 15, 13 (15, 13) .
(5)

It implies that tracker+ECAL based jets capture roughly
85% ± 15% of the actual jet energy. For subjets, ob-
tained by reclustering the jet constituents using the anti-
kT algorithm with cone size Rsubjet = (3/4)mW /pT , the
means are similar to that of the whole jet, while the fluc-
tuations are larger — by factors of 1.3–1.4 for each of the
two leading subjets. We note in passing that the neutral
fraction depends on the flavor composition of the boosted
jet partonic origin. This can potentially be used as a dis-
criminator in certain situations. For hadronic W , t and
h ! bb̄ 10 TeV jets, we find

hfW!cs̄, W!ud̄
N i = 21, 14, �fW!cs̄, W!ud̄

N = 16, 14,

hf t!bcs̄, t!bud̄
N i = 18, 14, �f t!bcs̄, t!bud̄

N = 12, 11,

hf h!bb̄
N i = 17, �f h!bb̄

N = 13 . (6)

As is well known, one can apply a global rescaling to
correct for the missing neutral component based on the
total jet energy, EJ , measured in the HCAL. For recent
discussions in the context of boosted jets, see [14, 15].
Jet energy resolution, which for instance in CMS is given
roughly by �(EJ)/EJ ⇡ 1.0/

p
EJ/GeV � 0.05 [20], is

only a minor limitation, since already for EJ & 50 GeV
the associated fluctuations are below 15%. Now we would
like to argue that such a global correction does not com-
pensate for fluctuations in jet substructure variables.
The reason is very simple: jet substructure, by defini-
tion, characterizes some kinematic properties of the jet’s
perturbative constituents, the subjets. However, each
subjet is subject to an independent fluctuation in the
neutral fraction. A global correction cannot cancel the
fluctuations of the individual subjets, f i

N .
Let us consider, for example, the jet mass, which is

among the simplest possible jet substructure variables.
We will show that applying a global correction to the
jet does not reduce the fluctuations. The jet mass for
boosted 2-body hadronic decays of W/Z/h (signal) is
dominated by just the two-prong kinematics, making it
simple to describe. For QCD jets, the mass distribution
depends on the jet cone size. We shall consider two cases
in the context of QCD jets as background for W jets,
for a fixed jet pT : (i) the W mass falls in the tail re-
gion of the QCD jet mass distribution, away from the
Sudakov peak, such that the two-prong approximation
roughly holds (see, for instance, Refs. [21–23]) and (ii)
the W mass is near or below the Sudakov peak, where
the QCD jet mass is partially driven by resummation of
multiple emissions (see, e.g., Refs. [24, 25] and references
therein).

The two-prong kinematics of a narrow jet can be
fully described by its energy, E12 = E1 + E2, mass,
m2

12
= E1E2✓212, and the energy fraction in the softer

parton/subjet, z = E2/E12  1

2
. Without the HCAL,

one measures

m2

12,N/ = (1� f1

N )(1� f2

N )m2

12
, (7)

where the subscript N/ denotes that the neutrals are omit-
ted. We have neglected a possible shift in ✓12 since
the angular resolution of the tracker is very good and
the subjets are very collimated. The global jet correc-
tion accounts for the average fraction of missing neutrals
by rescaling the mass according to m12,corr = m12,N/ ⇥
EJ/EJ,N/ , where EJ,N/ is the energy of all the particles
in the jet that can be measured using the tracker and
ECAL, namely

m12,corr =

P
i EiP

i

�
1� f i

N
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m12,N/ , (8)

where the sums are over all the subjets. At linear order in
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i Ei, we obtain
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where f3+
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P
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N start-
ing from i = 3. For the mean values of f1,2

N , the correc-
tion is perfect if we neglect the last term and the weak
dependence of f i

N on Ei. Statistical fluctuations lead to
fluctuations in m12,corr �m12 ,
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Note that the size of the fluctuations is z dependent. It is
interesting to see that both signal and background events
might benefit from cutting away the low z events as this
would reduce the average fluctuation in the mass.
Let us first consider the case that the QCD jets are

far from the Sudakov peak. Such QCD jets, as well as
boosted W jets, are dominated by the two-prong approx-
imation. In Fig. 2 (top row) we show the distributions of
the truth jet mass, m12, the mass without the neutrals,
m12,N/, as well as the globally corrected one, m12,corr, for
W and QCD jets with pT = 10 TeV. We focus on events
where the mass of the boosted W jets is indeed captured
by the two leading subjets at the truth level by requiring
m12 = 75 ± 5 GeV. For the QCD jets, the two leading
subjets carry more than 75% of the jet energy in about
95% of the cases. The fluctuations of m12,corr relative to
m12 are most significant for low z, as shown in Fig. 3
(left), consistent with the expectation from Eq. (10).
We now turn to examine the case where the jet mass is

in the Sudakov-peak region. For this purpose we use large
jet radii, R = 9mW /pT = 0.24 for 3 TeV jets and R =
15mW /pT = 0.12 for 10 TeV jets. For the W jets, which

♦ Subjet-neutrals fluctuate indep’: Rsubjet = (3/4) mW /pT , 40% larger.

♦ Who cares? Let’s correct the jet globally.

Bressler, Flacke, Kats, Lee & GP (15)
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♦ Can apply rescaling to correct for the missing neutral 

component based on total jet-E , measured in the HCAL. 

♦ As neutral component fluctuate indep’ not expected to work.

JES: σ(EJ )/EJ ≈ 1.0/︎EJ /GeV ⊕ 0.05, for EJ ︎ 50 GeV associated fluctuations < 15%. 

Consider a simple ex., jet mass, in the 2-prong approximation: 

3

(in %)

hfW,QCD

N i = 16, 15 (17, 15) , �fW,QCD

N = 15, 13 (15, 13) .
(5)

It implies that tracker+ECAL based jets capture roughly
85% ± 15% of the actual jet energy. For subjets, ob-
tained by reclustering the jet constituents using the anti-
kT algorithm with cone size Rsubjet = (3/4)mW /pT , the
means are similar to that of the whole jet, while the fluc-
tuations are larger — by factors of 1.3–1.4 for each of the
two leading subjets. We note in passing that the neutral
fraction depends on the flavor composition of the boosted
jet partonic origin. This can potentially be used as a dis-
criminator in certain situations. For hadronic W , t and
h ! bb̄ 10 TeV jets, we find

hfW!cs̄, W!ud̄
N i = 21, 14, �fW!cs̄, W!ud̄

N = 16, 14,

hf t!bcs̄, t!bud̄
N i = 18, 14, �f t!bcs̄, t!bud̄

N = 12, 11,

hf h!bb̄
N i = 17, �f h!bb̄

N = 13 . (6)

As is well known, one can apply a global rescaling to
correct for the missing neutral component based on the
total jet energy, EJ , measured in the HCAL. For recent
discussions in the context of boosted jets, see [14, 15].
Jet energy resolution, which for instance in CMS is given
roughly by �(EJ)/EJ ⇡ 1.0/

p
EJ/GeV � 0.05 [20], is

only a minor limitation, since already for EJ & 50 GeV
the associated fluctuations are below 15%. Now we would
like to argue that such a global correction does not com-
pensate for fluctuations in jet substructure variables.
The reason is very simple: jet substructure, by defini-
tion, characterizes some kinematic properties of the jet’s
perturbative constituents, the subjets. However, each
subjet is subject to an independent fluctuation in the
neutral fraction. A global correction cannot cancel the
fluctuations of the individual subjets, f i

N .
Let us consider, for example, the jet mass, which is

among the simplest possible jet substructure variables.
We will show that applying a global correction to the
jet does not reduce the fluctuations. The jet mass for
boosted 2-body hadronic decays of W/Z/h (signal) is
dominated by just the two-prong kinematics, making it
simple to describe. For QCD jets, the mass distribution
depends on the jet cone size. We shall consider two cases
in the context of QCD jets as background for W jets,
for a fixed jet pT : (i) the W mass falls in the tail re-
gion of the QCD jet mass distribution, away from the
Sudakov peak, such that the two-prong approximation
roughly holds (see, for instance, Refs. [21–23]) and (ii)
the W mass is near or below the Sudakov peak, where
the QCD jet mass is partially driven by resummation of
multiple emissions (see, e.g., Refs. [24, 25] and references
therein).

The two-prong kinematics of a narrow jet can be
fully described by its energy, E12 = E1 + E2, mass,
m2

12
= E1E2✓212, and the energy fraction in the softer

parton/subjet, z = E2/E12  1

2
. Without the HCAL,

one measures

m2

12,N/ = (1� f1

N )(1� f2

N )m2

12
, (7)

where the subscript N/ denotes that the neutrals are omit-
ted. We have neglected a possible shift in ✓12 since
the angular resolution of the tracker is very good and
the subjets are very collimated. The global jet correc-
tion accounts for the average fraction of missing neutrals
by rescaling the mass according to m12,corr = m12,N/ ⇥
EJ/EJ,N/ , where EJ,N/ is the energy of all the particles
in the jet that can be measured using the tracker and
ECAL, namely

m12,corr =
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i EiP
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m12,N/ , (8)

where the sums are over all the subjets. At linear order in
f1

N , f2

N , and y ⌘ (
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i Ei, we obtain
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where f3+
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Ei, with the sums in f3+

N start-
ing from i = 3. For the mean values of f1,2

N , the correc-
tion is perfect if we neglect the last term and the weak
dependence of f i

N on Ei. Statistical fluctuations lead to
fluctuations in m12,corr �m12 ,
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Note that the size of the fluctuations is z dependent. It is
interesting to see that both signal and background events
might benefit from cutting away the low z events as this
would reduce the average fluctuation in the mass.
Let us first consider the case that the QCD jets are

far from the Sudakov peak. Such QCD jets, as well as
boosted W jets, are dominated by the two-prong approx-
imation. In Fig. 2 (top row) we show the distributions of
the truth jet mass, m12, the mass without the neutrals,
m12,N/, as well as the globally corrected one, m12,corr, for
W and QCD jets with pT = 10 TeV. We focus on events
where the mass of the boosted W jets is indeed captured
by the two leading subjets at the truth level by requiring
m12 = 75 ± 5 GeV. For the QCD jets, the two leading
subjets carry more than 75% of the jet energy in about
95% of the cases. The fluctuations of m12,corr relative to
m12 are most significant for low z, as shown in Fig. 3
(left), consistent with the expectation from Eq. (10).
We now turn to examine the case where the jet mass is

in the Sudakov-peak region. For this purpose we use large
jet radii, R = 9mW /pT = 0.24 for 3 TeV jets and R =
15mW /pT = 0.12 for 10 TeV jets. For the W jets, which
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(in %)

hfW,QCD

N i = 16, 15 (17, 15) , �fW,QCD

N = 15, 13 (15, 13) .
(5)

It implies that tracker+ECAL based jets capture roughly
85% ± 15% of the actual jet energy. For subjets, ob-
tained by reclustering the jet constituents using the anti-
kT algorithm with cone size Rsubjet = (3/4)mW /pT , the
means are similar to that of the whole jet, while the fluc-
tuations are larger — by factors of 1.3–1.4 for each of the
two leading subjets. We note in passing that the neutral
fraction depends on the flavor composition of the boosted
jet partonic origin. This can potentially be used as a dis-
criminator in certain situations. For hadronic W , t and
h ! bb̄ 10 TeV jets, we find

hfW!cs̄, W!ud̄
N i = 21, 14, �fW!cs̄, W!ud̄

N = 16, 14,

hf t!bcs̄, t!bud̄
N i = 18, 14, �f t!bcs̄, t!bud̄

N = 12, 11,

hf h!bb̄
N i = 17, �f h!bb̄

N = 13 . (6)

As is well known, one can apply a global rescaling to
correct for the missing neutral component based on the
total jet energy, EJ , measured in the HCAL. For recent
discussions in the context of boosted jets, see [14, 15].
Jet energy resolution, which for instance in CMS is given
roughly by �(EJ)/EJ ⇡ 1.0/

p
EJ/GeV � 0.05 [20], is

only a minor limitation, since already for EJ & 50 GeV
the associated fluctuations are below 15%. Now we would
like to argue that such a global correction does not com-
pensate for fluctuations in jet substructure variables.
The reason is very simple: jet substructure, by defini-
tion, characterizes some kinematic properties of the jet’s
perturbative constituents, the subjets. However, each
subjet is subject to an independent fluctuation in the
neutral fraction. A global correction cannot cancel the
fluctuations of the individual subjets, f i

N .
Let us consider, for example, the jet mass, which is

among the simplest possible jet substructure variables.
We will show that applying a global correction to the
jet does not reduce the fluctuations. The jet mass for
boosted 2-body hadronic decays of W/Z/h (signal) is
dominated by just the two-prong kinematics, making it
simple to describe. For QCD jets, the mass distribution
depends on the jet cone size. We shall consider two cases
in the context of QCD jets as background for W jets,
for a fixed jet pT : (i) the W mass falls in the tail re-
gion of the QCD jet mass distribution, away from the
Sudakov peak, such that the two-prong approximation
roughly holds (see, for instance, Refs. [21–23]) and (ii)
the W mass is near or below the Sudakov peak, where
the QCD jet mass is partially driven by resummation of
multiple emissions (see, e.g., Refs. [24, 25] and references
therein).

The two-prong kinematics of a narrow jet can be
fully described by its energy, E12 = E1 + E2, mass,
m2

12
= E1E2✓212, and the energy fraction in the softer

parton/subjet, z = E2/E12  1

2
. Without the HCAL,

one measures

m2

12,N/ = (1� f1

N )(1� f2

N )m2

12
, (7)

where the subscript N/ denotes that the neutrals are omit-
ted. We have neglected a possible shift in ✓12 since
the angular resolution of the tracker is very good and
the subjets are very collimated. The global jet correc-
tion accounts for the average fraction of missing neutrals
by rescaling the mass according to m12,corr = m12,N/ ⇥
EJ/EJ,N/ , where EJ,N/ is the energy of all the particles
in the jet that can be measured using the tracker and
ECAL, namely

m12,corr =

P
i EiP

i

�
1� f i

N

�
Ei

m12,N/ , (8)

where the sums are over all the subjets. At linear order in
f1

N , f2

N , and y ⌘ (
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i Ei � E1 � E2) /
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i Ei, we obtain
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where f3+
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Ei, with the sums in f3+

N start-
ing from i = 3. For the mean values of f1,2

N , the correc-
tion is perfect if we neglect the last term and the weak
dependence of f i

N on Ei. Statistical fluctuations lead to
fluctuations in m12,corr �m12 ,

✓
�

✓
m12,corr �m12

m12

◆◆2

' 2

✓
1

2
� z

◆2

(�f1,2
N )2

+ hyi2 (�f3+

N )2 + hf3+

N i2 (�y)2.
(10)

Note that the size of the fluctuations is z dependent. It is
interesting to see that both signal and background events
might benefit from cutting away the low z events as this
would reduce the average fluctuation in the mass.
Let us first consider the case that the QCD jets are

far from the Sudakov peak. Such QCD jets, as well as
boosted W jets, are dominated by the two-prong approx-
imation. In Fig. 2 (top row) we show the distributions of
the truth jet mass, m12, the mass without the neutrals,
m12,N/, as well as the globally corrected one, m12,corr, for
W and QCD jets with pT = 10 TeV. We focus on events
where the mass of the boosted W jets is indeed captured
by the two leading subjets at the truth level by requiring
m12 = 75 ± 5 GeV. For the QCD jets, the two leading
subjets carry more than 75% of the jet energy in about
95% of the cases. The fluctuations of m12,corr relative to
m12 are most significant for low z, as shown in Fig. 3
(left), consistent with the expectation from Eq. (10).
We now turn to examine the case where the jet mass is

in the Sudakov-peak region. For this purpose we use large
jet radii, R = 9mW /pT = 0.24 for 3 TeV jets and R =
15mW /pT = 0.12 for 10 TeV jets. For the W jets, which

3

(in %)

hfW,QCD

N i = 16, 15 (17, 15) , �fW,QCD

N = 15, 13 (15, 13) .
(5)

It implies that tracker+ECAL based jets capture roughly
85% ± 15% of the actual jet energy. For subjets, ob-
tained by reclustering the jet constituents using the anti-
kT algorithm with cone size Rsubjet = (3/4)mW /pT , the
means are similar to that of the whole jet, while the fluc-
tuations are larger — by factors of 1.3–1.4 for each of the
two leading subjets. We note in passing that the neutral
fraction depends on the flavor composition of the boosted
jet partonic origin. This can potentially be used as a dis-
criminator in certain situations. For hadronic W , t and
h ! bb̄ 10 TeV jets, we find

hfW!cs̄, W!ud̄
N i = 21, 14, �fW!cs̄, W!ud̄

N = 16, 14,

hf t!bcs̄, t!bud̄
N i = 18, 14, �f t!bcs̄, t!bud̄

N = 12, 11,

hf h!bb̄
N i = 17, �f h!bb̄

N = 13 . (6)

As is well known, one can apply a global rescaling to
correct for the missing neutral component based on the
total jet energy, EJ , measured in the HCAL. For recent
discussions in the context of boosted jets, see [14, 15].
Jet energy resolution, which for instance in CMS is given
roughly by �(EJ)/EJ ⇡ 1.0/

p
EJ/GeV � 0.05 [20], is

only a minor limitation, since already for EJ & 50 GeV
the associated fluctuations are below 15%. Now we would
like to argue that such a global correction does not com-
pensate for fluctuations in jet substructure variables.
The reason is very simple: jet substructure, by defini-
tion, characterizes some kinematic properties of the jet’s
perturbative constituents, the subjets. However, each
subjet is subject to an independent fluctuation in the
neutral fraction. A global correction cannot cancel the
fluctuations of the individual subjets, f i

N .
Let us consider, for example, the jet mass, which is

among the simplest possible jet substructure variables.
We will show that applying a global correction to the
jet does not reduce the fluctuations. The jet mass for
boosted 2-body hadronic decays of W/Z/h (signal) is
dominated by just the two-prong kinematics, making it
simple to describe. For QCD jets, the mass distribution
depends on the jet cone size. We shall consider two cases
in the context of QCD jets as background for W jets,
for a fixed jet pT : (i) the W mass falls in the tail re-
gion of the QCD jet mass distribution, away from the
Sudakov peak, such that the two-prong approximation
roughly holds (see, for instance, Refs. [21–23]) and (ii)
the W mass is near or below the Sudakov peak, where
the QCD jet mass is partially driven by resummation of
multiple emissions (see, e.g., Refs. [24, 25] and references
therein).

The two-prong kinematics of a narrow jet can be
fully described by its energy, E12 = E1 + E2, mass,
m2

12
= E1E2✓212, and the energy fraction in the softer

parton/subjet, z = E2/E12  1

2
. Without the HCAL,

one measures

m2

12,N/ = (1� f1

N )(1� f2

N )m2

12
, (7)

where the subscript N/ denotes that the neutrals are omit-
ted. We have neglected a possible shift in ✓12 since
the angular resolution of the tracker is very good and
the subjets are very collimated. The global jet correc-
tion accounts for the average fraction of missing neutrals
by rescaling the mass according to m12,corr = m12,N/ ⇥
EJ/EJ,N/ , where EJ,N/ is the energy of all the particles
in the jet that can be measured using the tracker and
ECAL, namely

m12,corr =
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m12,N/ , (8)

where the sums are over all the subjets. At linear order in
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N , the correc-
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Note that the size of the fluctuations is z dependent. It is
interesting to see that both signal and background events
might benefit from cutting away the low z events as this
would reduce the average fluctuation in the mass.
Let us first consider the case that the QCD jets are

far from the Sudakov peak. Such QCD jets, as well as
boosted W jets, are dominated by the two-prong approx-
imation. In Fig. 2 (top row) we show the distributions of
the truth jet mass, m12, the mass without the neutrals,
m12,N/, as well as the globally corrected one, m12,corr, for
W and QCD jets with pT = 10 TeV. We focus on events
where the mass of the boosted W jets is indeed captured
by the two leading subjets at the truth level by requiring
m12 = 75 ± 5 GeV. For the QCD jets, the two leading
subjets carry more than 75% of the jet energy in about
95% of the cases. The fluctuations of m12,corr relative to
m12 are most significant for low z, as shown in Fig. 3
(left), consistent with the expectation from Eq. (10).
We now turn to examine the case where the jet mass is

in the Sudakov-peak region. For this purpose we use large
jet radii, R = 9mW /pT = 0.24 for 3 TeV jets and R =
15mW /pT = 0.12 for 10 TeV jets. For the W jets, which

Without the HCAL:
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(in %)

hfW,QCD

N i = 16, 15 (17, 15) , �fW,QCD

N = 15, 13 (15, 13) .
(5)

It implies that tracker+ECAL based jets capture roughly
85% ± 15% of the actual jet energy. For subjets, ob-
tained by reclustering the jet constituents using the anti-
kT algorithm with cone size Rsubjet = (3/4)mW /pT , the
means are similar to that of the whole jet, while the fluc-
tuations are larger — by factors of 1.3–1.4 for each of the
two leading subjets. We note in passing that the neutral
fraction depends on the flavor composition of the boosted
jet partonic origin. This can potentially be used as a dis-
criminator in certain situations. For hadronic W , t and
h ! bb̄ 10 TeV jets, we find

hfW!cs̄, W!ud̄
N i = 21, 14, �fW!cs̄, W!ud̄

N = 16, 14,

hf t!bcs̄, t!bud̄
N i = 18, 14, �f t!bcs̄, t!bud̄

N = 12, 11,

hf h!bb̄
N i = 17, �f h!bb̄

N = 13 . (6)

As is well known, one can apply a global rescaling to
correct for the missing neutral component based on the
total jet energy, EJ , measured in the HCAL. For recent
discussions in the context of boosted jets, see [14, 15].
Jet energy resolution, which for instance in CMS is given
roughly by �(EJ)/EJ ⇡ 1.0/

p
EJ/GeV � 0.05 [20], is

only a minor limitation, since already for EJ & 50 GeV
the associated fluctuations are below 15%. Now we would
like to argue that such a global correction does not com-
pensate for fluctuations in jet substructure variables.
The reason is very simple: jet substructure, by defini-
tion, characterizes some kinematic properties of the jet’s
perturbative constituents, the subjets. However, each
subjet is subject to an independent fluctuation in the
neutral fraction. A global correction cannot cancel the
fluctuations of the individual subjets, f i

N .
Let us consider, for example, the jet mass, which is

among the simplest possible jet substructure variables.
We will show that applying a global correction to the
jet does not reduce the fluctuations. The jet mass for
boosted 2-body hadronic decays of W/Z/h (signal) is
dominated by just the two-prong kinematics, making it
simple to describe. For QCD jets, the mass distribution
depends on the jet cone size. We shall consider two cases
in the context of QCD jets as background for W jets,
for a fixed jet pT : (i) the W mass falls in the tail re-
gion of the QCD jet mass distribution, away from the
Sudakov peak, such that the two-prong approximation
roughly holds (see, for instance, Refs. [21–23]) and (ii)
the W mass is near or below the Sudakov peak, where
the QCD jet mass is partially driven by resummation of
multiple emissions (see, e.g., Refs. [24, 25] and references
therein).

The two-prong kinematics of a narrow jet can be
fully described by its energy, E12 = E1 + E2, mass,
m2

12
= E1E2✓212, and the energy fraction in the softer

parton/subjet, z = E2/E12  1

2
. Without the HCAL,

one measures

m2

12,N/ = (1� f1
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N )m2

12
, (7)

where the subscript N/ denotes that the neutrals are omit-
ted. We have neglected a possible shift in ✓12 since
the angular resolution of the tracker is very good and
the subjets are very collimated. The global jet correc-
tion accounts for the average fraction of missing neutrals
by rescaling the mass according to m12,corr = m12,N/ ⇥
EJ/EJ,N/ , where EJ,N/ is the energy of all the particles
in the jet that can be measured using the tracker and
ECAL, namely

m12,corr =
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i EiP

i

�
1� f i

N

�
Ei

m12,N/ , (8)

where the sums are over all the subjets. At linear order in
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N , and y ⌘ (
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i Ei, we obtain
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where f3+
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✓
�

✓
m12,corr �m12

m12

◆◆2

' 2

✓
1

2
� z

◆2

(�f1,2
N )2

+ hyi2 (�f3+

N )2 + hf3+

N i2 (�y)2.
(10)

Note that the size of the fluctuations is z dependent. It is
interesting to see that both signal and background events
might benefit from cutting away the low z events as this
would reduce the average fluctuation in the mass.
Let us first consider the case that the QCD jets are

far from the Sudakov peak. Such QCD jets, as well as
boosted W jets, are dominated by the two-prong approx-
imation. In Fig. 2 (top row) we show the distributions of
the truth jet mass, m12, the mass without the neutrals,
m12,N/, as well as the globally corrected one, m12,corr, for
W and QCD jets with pT = 10 TeV. We focus on events
where the mass of the boosted W jets is indeed captured
by the two leading subjets at the truth level by requiring
m12 = 75 ± 5 GeV. For the QCD jets, the two leading
subjets carry more than 75% of the jet energy in about
95% of the cases. The fluctuations of m12,corr relative to
m12 are most significant for low z, as shown in Fig. 3
(left), consistent with the expectation from Eq. (10).
We now turn to examine the case where the jet mass is

in the Sudakov-peak region. For this purpose we use large
jet radii, R = 9mW /pT = 0.24 for 3 TeV jets and R =
15mW /pT = 0.12 for 10 TeV jets. For the W jets, which

N = omitted neutrals; f i
N = neutral fraction within ith subjet./
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♦ Global correction:

3

(in %)

hfW,QCD

N i = 16, 15 (17, 15) , �fW,QCD

N = 15, 13 (15, 13) .
(5)

It implies that tracker+ECAL based jets capture roughly
85% ± 15% of the actual jet energy. For subjets, ob-
tained by reclustering the jet constituents using the anti-
kT algorithm with cone size Rsubjet = (3/4)mW /pT , the
means are similar to that of the whole jet, while the fluc-
tuations are larger — by factors of 1.3–1.4 for each of the
two leading subjets. We note in passing that the neutral
fraction depends on the flavor composition of the boosted
jet partonic origin. This can potentially be used as a dis-
criminator in certain situations. For hadronic W , t and
h ! bb̄ 10 TeV jets, we find

hfW!cs̄, W!ud̄
N i = 21, 14, �fW!cs̄, W!ud̄

N = 16, 14,

hf t!bcs̄, t!bud̄
N i = 18, 14, �f t!bcs̄, t!bud̄

N = 12, 11,

hf h!bb̄
N i = 17, �f h!bb̄

N = 13 . (6)

As is well known, one can apply a global rescaling to
correct for the missing neutral component based on the
total jet energy, EJ , measured in the HCAL. For recent
discussions in the context of boosted jets, see [14, 15].
Jet energy resolution, which for instance in CMS is given
roughly by �(EJ)/EJ ⇡ 1.0/

p
EJ/GeV � 0.05 [20], is

only a minor limitation, since already for EJ & 50 GeV
the associated fluctuations are below 15%. Now we would
like to argue that such a global correction does not com-
pensate for fluctuations in jet substructure variables.
The reason is very simple: jet substructure, by defini-
tion, characterizes some kinematic properties of the jet’s
perturbative constituents, the subjets. However, each
subjet is subject to an independent fluctuation in the
neutral fraction. A global correction cannot cancel the
fluctuations of the individual subjets, f i

N .
Let us consider, for example, the jet mass, which is

among the simplest possible jet substructure variables.
We will show that applying a global correction to the
jet does not reduce the fluctuations. The jet mass for
boosted 2-body hadronic decays of W/Z/h (signal) is
dominated by just the two-prong kinematics, making it
simple to describe. For QCD jets, the mass distribution
depends on the jet cone size. We shall consider two cases
in the context of QCD jets as background for W jets,
for a fixed jet pT : (i) the W mass falls in the tail re-
gion of the QCD jet mass distribution, away from the
Sudakov peak, such that the two-prong approximation
roughly holds (see, for instance, Refs. [21–23]) and (ii)
the W mass is near or below the Sudakov peak, where
the QCD jet mass is partially driven by resummation of
multiple emissions (see, e.g., Refs. [24, 25] and references
therein).

The two-prong kinematics of a narrow jet can be
fully described by its energy, E12 = E1 + E2, mass,
m2

12
= E1E2✓212, and the energy fraction in the softer

parton/subjet, z = E2/E12  1

2
. Without the HCAL,

one measures

m2

12,N/ = (1� f1

N )(1� f2

N )m2

12
, (7)

where the subscript N/ denotes that the neutrals are omit-
ted. We have neglected a possible shift in ✓12 since
the angular resolution of the tracker is very good and
the subjets are very collimated. The global jet correc-
tion accounts for the average fraction of missing neutrals
by rescaling the mass according to m12,corr = m12,N/ ⇥
EJ/EJ,N/ , where EJ,N/ is the energy of all the particles
in the jet that can be measured using the tracker and
ECAL, namely

m12,corr =

P
i EiP

i

�
1� f i

N

�
Ei

m12,N/ , (8)

where the sums are over all the subjets. At linear order in
f1

N , f2

N , and y ⌘ (
P

i Ei � E1 � E2) /
P

i Ei, we obtain

m12,corr �m12

m12

'
✓
1

2
� z

◆
(f1

N � f2

N ) + y f3+

N , (9)

where f3+

N ⌘
P

f i
NEi/

P
Ei, with the sums in f3+

N start-
ing from i = 3. For the mean values of f1,2

N , the correc-
tion is perfect if we neglect the last term and the weak
dependence of f i

N on Ei. Statistical fluctuations lead to
fluctuations in m12,corr �m12 ,

✓
�

✓
m12,corr �m12

m12

◆◆2

' 2

✓
1

2
� z

◆2

(�f1,2
N )2

+ hyi2 (�f3+

N )2 + hf3+

N i2 (�y)2.
(10)

Note that the size of the fluctuations is z dependent. It is
interesting to see that both signal and background events
might benefit from cutting away the low z events as this
would reduce the average fluctuation in the mass.
Let us first consider the case that the QCD jets are

far from the Sudakov peak. Such QCD jets, as well as
boosted W jets, are dominated by the two-prong approx-
imation. In Fig. 2 (top row) we show the distributions of
the truth jet mass, m12, the mass without the neutrals,
m12,N/, as well as the globally corrected one, m12,corr, for
W and QCD jets with pT = 10 TeV. We focus on events
where the mass of the boosted W jets is indeed captured
by the two leading subjets at the truth level by requiring
m12 = 75 ± 5 GeV. For the QCD jets, the two leading
subjets carry more than 75% of the jet energy in about
95% of the cases. The fluctuations of m12,corr relative to
m12 are most significant for low z, as shown in Fig. 3
(left), consistent with the expectation from Eq. (10).
We now turn to examine the case where the jet mass is

in the Sudakov-peak region. For this purpose we use large
jet radii, R = 9mW /pT = 0.24 for 3 TeV jets and R =
15mW /pT = 0.12 for 10 TeV jets. For the W jets, which
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FIG. 2. Jet mass based on the two leading subjets: m12

(truth value, required to be 75 ± 5 GeV, thin black), m12,N/

(without the neutrals, dotted green) and m12,corr (corrected,
thick blue) for boosted W jets (left) and QCD jets (right)
with jet pT = 10 TeV, for cone sizes R = 3mW /pT (top row)
and R = 15mW /pT (bottom row). In all cases Rsubjet =
(3/4)mW /pT .

are still controlled by the two-prong limit, there should
not be much of an e↵ect. However, for the QCD jets,
which are now a↵ected by a large number of emissions,
we expect the correlation with the two-prong variable, z,
to be rather weak. The two leading subjets in 3 (10) TeV
QCD jets carry more than 75% of the jet energy in only
80% (84%) of the cases. Figures 2 (bottom row) and 3
(right) confirm this expectation.

The only other jet-substructure variable that is inde-
pendent of the mass, for two-prong kinematics, is z itself.
To leading order, after fixing the mass, W jets have a flat
z distribution while for QCD jets it is proportional to 1/z
for small z’s [21]. It is therefore possible to apply a lower
cut on z to enhance the signal over the corresponding
QCD background [26], or alternatively apply an upper
cut on z to obtain a background-enriched sample to study
massive QCD jets or have a control region. However, the
impact of the lost neutrals on the signal and background
e�ciencies is quite minor as the z distributions of both
the signal and background are pretty broad to start with.
This is also being reflected by the fact that cutting on z
is not particularly useful for rejecting the background.

Zero-cone-size, longitudinal jet information.—

Future HCALs are envisioned to have an improved granu-
larity not only in the transverse but also in the longitudi-
nal direction (see, e.g., Ref. [11]), allowing to measure the
longitudinal energy deposition profile. In principle, the
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FIG. 3. Standard deviation of the relative o↵set in the
corrected jet mass (for jets with truth mass in the range
75 ± 5 GeV) as a function of z, for boosted W jets (thin
blue) and QCD jets (thick red) with jet pT = 3 TeV (solid)
and 10 TeV (dotted). On the left we use jets with cone size
R = 3mW /pT , while on the right we use large cones (the Su-
dakov peak case). In both cases Rsubjet = (3/4)mW /pT . The
mean o↵set (not shown) is much smaller than the standard
deviation.

profile is sensitive to the energy depositions of individual
hadrons. Separation between them is slightly aided by
the fact that the shower starts at a random depth for each
hadron. The relevant so-called pion interaction length is
comparable to �A [11]. Remarkably, the longitudinal in-
formation is available even if the hadrons are completely
collinear, when the conventional jet substructure vari-
ables, all of which depend on transverse separation, are
powerless.

In practice, extracting individual contributions from a
measured profile may be challenging, as there will still be
a significant degree of shower overlap, the shower shapes
vary significantly event-by-event [9, 27], and the granu-
larity will still be a limiting factor. We will not analyze
this in detail, but discuss how information obtained in
this way can potentially be useful.

If each hard parton produced one hard hadron and a
few softer ones, the longitudinal profile of a boosted W
jet, for example, would typically contain two relatively
large humps, while a QCD jet would lead to a single and
more energetic one. That would likely be easy to see. In
practice, each high-pT parton produces several compara-
bly energetic hadrons, so the picture is more complicated,
but one might still hope that some information about the
underlying partonic structure remains. One could imag-
ine variables such as the pT fraction carried by the leading
hadron, or the number of hadrons one needs to sum to
account for a certain fraction of the jet pT . If one of the
hadrons is a ⇡0(! ��) and thus deposits all of its energy
in the ECAL, it can be accounted for in a trivial way and
only make the interpretation of the HCAL profile easier.

One might hope that the availability of the longitudi-
nal profile makes the loss of transverse information less
severe of an issue. However, we find that the longitudinal
information, even at the truth level (i.e., before simulat-

Bressler, Flacke, Kats, Lee & GP (15)

truth
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♦ Understand analytically, first focus on blue curves for signal: 4
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FIG. 2. Jet mass based on the two leading subjets: m12

(truth value, required to be 75 ± 5 GeV, thin black), m12,N/

(without the neutrals, dotted green) and m12,corr (corrected,
thick blue) for boosted W jets (left) and QCD jets (right)
with jet pT = 10 TeV, for cone sizes R = 3mW /pT (top row)
and R = 15mW /pT (bottom row). In all cases Rsubjet =
(3/4)mW /pT .

are still controlled by the two-prong limit, there should
not be much of an e↵ect. However, for the QCD jets,
which are now a↵ected by a large number of emissions,
we expect the correlation with the two-prong variable, z,
to be rather weak. The two leading subjets in 3 (10) TeV
QCD jets carry more than 75% of the jet energy in only
80% (84%) of the cases. Figures 2 (bottom row) and 3
(right) confirm this expectation.

The only other jet-substructure variable that is inde-
pendent of the mass, for two-prong kinematics, is z itself.
To leading order, after fixing the mass, W jets have a flat
z distribution while for QCD jets it is proportional to 1/z
for small z’s [21]. It is therefore possible to apply a lower
cut on z to enhance the signal over the corresponding
QCD background [26], or alternatively apply an upper
cut on z to obtain a background-enriched sample to study
massive QCD jets or have a control region. However, the
impact of the lost neutrals on the signal and background
e�ciencies is quite minor as the z distributions of both
the signal and background are pretty broad to start with.
This is also being reflected by the fact that cutting on z
is not particularly useful for rejecting the background.

Zero-cone-size, longitudinal jet information.—

Future HCALs are envisioned to have an improved granu-
larity not only in the transverse but also in the longitudi-
nal direction (see, e.g., Ref. [11]), allowing to measure the
longitudinal energy deposition profile. In principle, the
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FIG. 3. Standard deviation of the relative o↵set in the
corrected jet mass (for jets with truth mass in the range
75 ± 5 GeV) as a function of z, for boosted W jets (thin
blue) and QCD jets (thick red) with jet pT = 3 TeV (solid)
and 10 TeV (dotted). On the left we use jets with cone size
R = 3mW /pT , while on the right we use large cones (the Su-
dakov peak case). In both cases Rsubjet = (3/4)mW /pT . The
mean o↵set (not shown) is much smaller than the standard
deviation.

profile is sensitive to the energy depositions of individual
hadrons. Separation between them is slightly aided by
the fact that the shower starts at a random depth for each
hadron. The relevant so-called pion interaction length is
comparable to �A [11]. Remarkably, the longitudinal in-
formation is available even if the hadrons are completely
collinear, when the conventional jet substructure vari-
ables, all of which depend on transverse separation, are
powerless.

In practice, extracting individual contributions from a
measured profile may be challenging, as there will still be
a significant degree of shower overlap, the shower shapes
vary significantly event-by-event [9, 27], and the granu-
larity will still be a limiting factor. We will not analyze
this in detail, but discuss how information obtained in
this way can potentially be useful.

If each hard parton produced one hard hadron and a
few softer ones, the longitudinal profile of a boosted W
jet, for example, would typically contain two relatively
large humps, while a QCD jet would lead to a single and
more energetic one. That would likely be easy to see. In
practice, each high-pT parton produces several compara-
bly energetic hadrons, so the picture is more complicated,
but one might still hope that some information about the
underlying partonic structure remains. One could imag-
ine variables such as the pT fraction carried by the leading
hadron, or the number of hadrons one needs to sum to
account for a certain fraction of the jet pT . If one of the
hadrons is a ⇡0(! ��) and thus deposits all of its energy
in the ECAL, it can be accounted for in a trivial way and
only make the interpretation of the HCAL profile easier.

One might hope that the availability of the longitudi-
nal profile makes the loss of transverse information less
severe of an issue. However, we find that the longitudinal
information, even at the truth level (i.e., before simulat-

jet mass (truth mass = 75 ± 5 GeV), jet pT = 3 TeV (solid) , 10 TeV (dotted).

Bressler, Flacke, Kats, Lee & GP (15)

R = 3mW /pT R = 9mW /pT

3

(in %)

hfW,QCD

N i = 16, 15 (17, 15) , �fW,QCD

N = 15, 13 (15, 13) .
(5)

It implies that tracker+ECAL based jets capture roughly
85% ± 15% of the actual jet energy. For subjets, ob-
tained by reclustering the jet constituents using the anti-
kT algorithm with cone size Rsubjet = (3/4)mW /pT , the
means are similar to that of the whole jet, while the fluc-
tuations are larger — by factors of 1.3–1.4 for each of the
two leading subjets. We note in passing that the neutral
fraction depends on the flavor composition of the boosted
jet partonic origin. This can potentially be used as a dis-
criminator in certain situations. For hadronic W , t and
h ! bb̄ 10 TeV jets, we find

hfW!cs̄, W!ud̄
N i = 21, 14, �fW!cs̄, W!ud̄

N = 16, 14,

hf t!bcs̄, t!bud̄
N i = 18, 14, �f t!bcs̄, t!bud̄

N = 12, 11,

hf h!bb̄
N i = 17, �f h!bb̄

N = 13 . (6)

As is well known, one can apply a global rescaling to
correct for the missing neutral component based on the
total jet energy, EJ , measured in the HCAL. For recent
discussions in the context of boosted jets, see [14, 15].
Jet energy resolution, which for instance in CMS is given
roughly by �(EJ)/EJ ⇡ 1.0/

p
EJ/GeV � 0.05 [20], is

only a minor limitation, since already for EJ & 50 GeV
the associated fluctuations are below 15%. Now we would
like to argue that such a global correction does not com-
pensate for fluctuations in jet substructure variables.
The reason is very simple: jet substructure, by defini-
tion, characterizes some kinematic properties of the jet’s
perturbative constituents, the subjets. However, each
subjet is subject to an independent fluctuation in the
neutral fraction. A global correction cannot cancel the
fluctuations of the individual subjets, f i

N .
Let us consider, for example, the jet mass, which is

among the simplest possible jet substructure variables.
We will show that applying a global correction to the
jet does not reduce the fluctuations. The jet mass for
boosted 2-body hadronic decays of W/Z/h (signal) is
dominated by just the two-prong kinematics, making it
simple to describe. For QCD jets, the mass distribution
depends on the jet cone size. We shall consider two cases
in the context of QCD jets as background for W jets,
for a fixed jet pT : (i) the W mass falls in the tail re-
gion of the QCD jet mass distribution, away from the
Sudakov peak, such that the two-prong approximation
roughly holds (see, for instance, Refs. [21–23]) and (ii)
the W mass is near or below the Sudakov peak, where
the QCD jet mass is partially driven by resummation of
multiple emissions (see, e.g., Refs. [24, 25] and references
therein).

The two-prong kinematics of a narrow jet can be
fully described by its energy, E12 = E1 + E2, mass,
m2

12
= E1E2✓212, and the energy fraction in the softer

parton/subjet, z = E2/E12  1

2
. Without the HCAL,

one measures

m2

12,N/ = (1� f1

N )(1� f2

N )m2

12
, (7)

where the subscript N/ denotes that the neutrals are omit-
ted. We have neglected a possible shift in ✓12 since
the angular resolution of the tracker is very good and
the subjets are very collimated. The global jet correc-
tion accounts for the average fraction of missing neutrals
by rescaling the mass according to m12,corr = m12,N/ ⇥
EJ/EJ,N/ , where EJ,N/ is the energy of all the particles
in the jet that can be measured using the tracker and
ECAL, namely

m12,corr =

P
i EiP

i

�
1� f i

N

�
Ei

m12,N/ , (8)

where the sums are over all the subjets. At linear order in
f1

N , f2

N , and y ⌘ (
P

i Ei � E1 � E2) /
P

i Ei, we obtain

m12,corr �m12

m12

'
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1

2
� z
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(f1

N � f2

N ) + y f3+

N , (9)

where f3+

N ⌘
P

f i
NEi/

P
Ei, with the sums in f3+

N start-
ing from i = 3. For the mean values of f1,2

N , the correc-
tion is perfect if we neglect the last term and the weak
dependence of f i

N on Ei. Statistical fluctuations lead to
fluctuations in m12,corr �m12 ,
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Note that the size of the fluctuations is z dependent. It is
interesting to see that both signal and background events
might benefit from cutting away the low z events as this
would reduce the average fluctuation in the mass.
Let us first consider the case that the QCD jets are

far from the Sudakov peak. Such QCD jets, as well as
boosted W jets, are dominated by the two-prong approx-
imation. In Fig. 2 (top row) we show the distributions of
the truth jet mass, m12, the mass without the neutrals,
m12,N/, as well as the globally corrected one, m12,corr, for
W and QCD jets with pT = 10 TeV. We focus on events
where the mass of the boosted W jets is indeed captured
by the two leading subjets at the truth level by requiring
m12 = 75 ± 5 GeV. For the QCD jets, the two leading
subjets carry more than 75% of the jet energy in about
95% of the cases. The fluctuations of m12,corr relative to
m12 are most significant for low z, as shown in Fig. 3
(left), consistent with the expectation from Eq. (10).
We now turn to examine the case where the jet mass is

in the Sudakov-peak region. For this purpose we use large
jet radii, R = 9mW /pT = 0.24 for 3 TeV jets and R =
15mW /pT = 0.12 for 10 TeV jets. For the W jets, which
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N i = 16, 15 (17, 15) , �fW,QCD

N = 15, 13 (15, 13) .
(5)

It implies that tracker+ECAL based jets capture roughly
85% ± 15% of the actual jet energy. For subjets, ob-
tained by reclustering the jet constituents using the anti-
kT algorithm with cone size Rsubjet = (3/4)mW /pT , the
means are similar to that of the whole jet, while the fluc-
tuations are larger — by factors of 1.3–1.4 for each of the
two leading subjets. We note in passing that the neutral
fraction depends on the flavor composition of the boosted
jet partonic origin. This can potentially be used as a dis-
criminator in certain situations. For hadronic W , t and
h ! bb̄ 10 TeV jets, we find

hfW!cs̄, W!ud̄
N i = 21, 14, �fW!cs̄, W!ud̄

N = 16, 14,
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N i = 18, 14, �f t!bcs̄, t!bud̄

N = 12, 11,

hf h!bb̄
N i = 17, �f h!bb̄

N = 13 . (6)

As is well known, one can apply a global rescaling to
correct for the missing neutral component based on the
total jet energy, EJ , measured in the HCAL. For recent
discussions in the context of boosted jets, see [14, 15].
Jet energy resolution, which for instance in CMS is given
roughly by �(EJ)/EJ ⇡ 1.0/

p
EJ/GeV � 0.05 [20], is

only a minor limitation, since already for EJ & 50 GeV
the associated fluctuations are below 15%. Now we would
like to argue that such a global correction does not com-
pensate for fluctuations in jet substructure variables.
The reason is very simple: jet substructure, by defini-
tion, characterizes some kinematic properties of the jet’s
perturbative constituents, the subjets. However, each
subjet is subject to an independent fluctuation in the
neutral fraction. A global correction cannot cancel the
fluctuations of the individual subjets, f i

N .
Let us consider, for example, the jet mass, which is

among the simplest possible jet substructure variables.
We will show that applying a global correction to the
jet does not reduce the fluctuations. The jet mass for
boosted 2-body hadronic decays of W/Z/h (signal) is
dominated by just the two-prong kinematics, making it
simple to describe. For QCD jets, the mass distribution
depends on the jet cone size. We shall consider two cases
in the context of QCD jets as background for W jets,
for a fixed jet pT : (i) the W mass falls in the tail re-
gion of the QCD jet mass distribution, away from the
Sudakov peak, such that the two-prong approximation
roughly holds (see, for instance, Refs. [21–23]) and (ii)
the W mass is near or below the Sudakov peak, where
the QCD jet mass is partially driven by resummation of
multiple emissions (see, e.g., Refs. [24, 25] and references
therein).

The two-prong kinematics of a narrow jet can be
fully described by its energy, E12 = E1 + E2, mass,
m2

12
= E1E2✓212, and the energy fraction in the softer

parton/subjet, z = E2/E12  1
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. Without the HCAL,

one measures

m2

12,N/ = (1� f1
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N )m2
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, (7)

where the subscript N/ denotes that the neutrals are omit-
ted. We have neglected a possible shift in ✓12 since
the angular resolution of the tracker is very good and
the subjets are very collimated. The global jet correc-
tion accounts for the average fraction of missing neutrals
by rescaling the mass according to m12,corr = m12,N/ ⇥
EJ/EJ,N/ , where EJ,N/ is the energy of all the particles
in the jet that can be measured using the tracker and
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Note that the size of the fluctuations is z dependent. It is
interesting to see that both signal and background events
might benefit from cutting away the low z events as this
would reduce the average fluctuation in the mass.
Let us first consider the case that the QCD jets are

far from the Sudakov peak. Such QCD jets, as well as
boosted W jets, are dominated by the two-prong approx-
imation. In Fig. 2 (top row) we show the distributions of
the truth jet mass, m12, the mass without the neutrals,
m12,N/, as well as the globally corrected one, m12,corr, for
W and QCD jets with pT = 10 TeV. We focus on events
where the mass of the boosted W jets is indeed captured
by the two leading subjets at the truth level by requiring
m12 = 75 ± 5 GeV. For the QCD jets, the two leading
subjets carry more than 75% of the jet energy in about
95% of the cases. The fluctuations of m12,corr relative to
m12 are most significant for low z, as shown in Fig. 3
(left), consistent with the expectation from Eq. (10).
We now turn to examine the case where the jet mass is

in the Sudakov-peak region. For this purpose we use large
jet radii, R = 9mW /pT = 0.24 for 3 TeV jets and R =
15mW /pT = 0.12 for 10 TeV jets. For the W jets, which
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It implies that tracker+ECAL based jets capture roughly
85% ± 15% of the actual jet energy. For subjets, ob-
tained by reclustering the jet constituents using the anti-
kT algorithm with cone size Rsubjet = (3/4)mW /pT , the
means are similar to that of the whole jet, while the fluc-
tuations are larger — by factors of 1.3–1.4 for each of the
two leading subjets. We note in passing that the neutral
fraction depends on the flavor composition of the boosted
jet partonic origin. This can potentially be used as a dis-
criminator in certain situations. For hadronic W , t and
h ! bb̄ 10 TeV jets, we find

hfW!cs̄, W!ud̄
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N = 16, 14,
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N i = 17, �f h!bb̄

N = 13 . (6)

As is well known, one can apply a global rescaling to
correct for the missing neutral component based on the
total jet energy, EJ , measured in the HCAL. For recent
discussions in the context of boosted jets, see [14, 15].
Jet energy resolution, which for instance in CMS is given
roughly by �(EJ)/EJ ⇡ 1.0/

p
EJ/GeV � 0.05 [20], is

only a minor limitation, since already for EJ & 50 GeV
the associated fluctuations are below 15%. Now we would
like to argue that such a global correction does not com-
pensate for fluctuations in jet substructure variables.
The reason is very simple: jet substructure, by defini-
tion, characterizes some kinematic properties of the jet’s
perturbative constituents, the subjets. However, each
subjet is subject to an independent fluctuation in the
neutral fraction. A global correction cannot cancel the
fluctuations of the individual subjets, f i

N .
Let us consider, for example, the jet mass, which is

among the simplest possible jet substructure variables.
We will show that applying a global correction to the
jet does not reduce the fluctuations. The jet mass for
boosted 2-body hadronic decays of W/Z/h (signal) is
dominated by just the two-prong kinematics, making it
simple to describe. For QCD jets, the mass distribution
depends on the jet cone size. We shall consider two cases
in the context of QCD jets as background for W jets,
for a fixed jet pT : (i) the W mass falls in the tail re-
gion of the QCD jet mass distribution, away from the
Sudakov peak, such that the two-prong approximation
roughly holds (see, for instance, Refs. [21–23]) and (ii)
the W mass is near or below the Sudakov peak, where
the QCD jet mass is partially driven by resummation of
multiple emissions (see, e.g., Refs. [24, 25] and references
therein).

The two-prong kinematics of a narrow jet can be
fully described by its energy, E12 = E1 + E2, mass,
m2
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Note that the size of the fluctuations is z dependent. It is
interesting to see that both signal and background events
might benefit from cutting away the low z events as this
would reduce the average fluctuation in the mass.
Let us first consider the case that the QCD jets are

far from the Sudakov peak. Such QCD jets, as well as
boosted W jets, are dominated by the two-prong approx-
imation. In Fig. 2 (top row) we show the distributions of
the truth jet mass, m12, the mass without the neutrals,
m12,N/, as well as the globally corrected one, m12,corr, for
W and QCD jets with pT = 10 TeV. We focus on events
where the mass of the boosted W jets is indeed captured
by the two leading subjets at the truth level by requiring
m12 = 75 ± 5 GeV. For the QCD jets, the two leading
subjets carry more than 75% of the jet energy in about
95% of the cases. The fluctuations of m12,corr relative to
m12 are most significant for low z, as shown in Fig. 3
(left), consistent with the expectation from Eq. (10).
We now turn to examine the case where the jet mass is

in the Sudakov-peak region. For this purpose we use large
jet radii, R = 9mW /pT = 0.24 for 3 TeV jets and R =
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85% ± 15% of the actual jet energy. For subjets, ob-
tained by reclustering the jet constituents using the anti-
kT algorithm with cone size Rsubjet = (3/4)mW /pT , the
means are similar to that of the whole jet, while the fluc-
tuations are larger — by factors of 1.3–1.4 for each of the
two leading subjets. We note in passing that the neutral
fraction depends on the flavor composition of the boosted
jet partonic origin. This can potentially be used as a dis-
criminator in certain situations. For hadronic W , t and
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As is well known, one can apply a global rescaling to
correct for the missing neutral component based on the
total jet energy, EJ , measured in the HCAL. For recent
discussions in the context of boosted jets, see [14, 15].
Jet energy resolution, which for instance in CMS is given
roughly by �(EJ)/EJ ⇡ 1.0/
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EJ/GeV � 0.05 [20], is

only a minor limitation, since already for EJ & 50 GeV
the associated fluctuations are below 15%. Now we would
like to argue that such a global correction does not com-
pensate for fluctuations in jet substructure variables.
The reason is very simple: jet substructure, by defini-
tion, characterizes some kinematic properties of the jet’s
perturbative constituents, the subjets. However, each
subjet is subject to an independent fluctuation in the
neutral fraction. A global correction cannot cancel the
fluctuations of the individual subjets, f i
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Let us consider, for example, the jet mass, which is

among the simplest possible jet substructure variables.
We will show that applying a global correction to the
jet does not reduce the fluctuations. The jet mass for
boosted 2-body hadronic decays of W/Z/h (signal) is
dominated by just the two-prong kinematics, making it
simple to describe. For QCD jets, the mass distribution
depends on the jet cone size. We shall consider two cases
in the context of QCD jets as background for W jets,
for a fixed jet pT : (i) the W mass falls in the tail re-
gion of the QCD jet mass distribution, away from the
Sudakov peak, such that the two-prong approximation
roughly holds (see, for instance, Refs. [21–23]) and (ii)
the W mass is near or below the Sudakov peak, where
the QCD jet mass is partially driven by resummation of
multiple emissions (see, e.g., Refs. [24, 25] and references
therein).

The two-prong kinematics of a narrow jet can be
fully described by its energy, E12 = E1 + E2, mass,
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where the subscript N/ denotes that the neutrals are omit-
ted. We have neglected a possible shift in ✓12 since
the angular resolution of the tracker is very good and
the subjets are very collimated. The global jet correc-
tion accounts for the average fraction of missing neutrals
by rescaling the mass according to m12,corr = m12,N/ ⇥
EJ/EJ,N/ , where EJ,N/ is the energy of all the particles
in the jet that can be measured using the tracker and
ECAL, namely
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Note that the size of the fluctuations is z dependent. It is
interesting to see that both signal and background events
might benefit from cutting away the low z events as this
would reduce the average fluctuation in the mass.
Let us first consider the case that the QCD jets are

far from the Sudakov peak. Such QCD jets, as well as
boosted W jets, are dominated by the two-prong approx-
imation. In Fig. 2 (top row) we show the distributions of
the truth jet mass, m12, the mass without the neutrals,
m12,N/, as well as the globally corrected one, m12,corr, for
W and QCD jets with pT = 10 TeV. We focus on events
where the mass of the boosted W jets is indeed captured
by the two leading subjets at the truth level by requiring
m12 = 75 ± 5 GeV. For the QCD jets, the two leading
subjets carry more than 75% of the jet energy in about
95% of the cases. The fluctuations of m12,corr relative to
m12 are most significant for low z, as shown in Fig. 3
(left), consistent with the expectation from Eq. (10).
We now turn to examine the case where the jet mass is

in the Sudakov-peak region. For this purpose we use large
jet radii, R = 9mW /pT = 0.24 for 3 TeV jets and R =
15mW /pT = 0.12 for 10 TeV jets. For the W jets, which
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♦ Why background fluctuations, in red, depend strongly on R ?
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FIG. 2. Jet mass based on the two leading subjets: m12

(truth value, required to be 75 ± 5 GeV, thin black), m12,N/

(without the neutrals, dotted green) and m12,corr (corrected,
thick blue) for boosted W jets (left) and QCD jets (right)
with jet pT = 10 TeV, for cone sizes R = 3mW /pT (top row)
and R = 15mW /pT (bottom row). In all cases Rsubjet =
(3/4)mW /pT .

are still controlled by the two-prong limit, there should
not be much of an e↵ect. However, for the QCD jets,
which are now a↵ected by a large number of emissions,
we expect the correlation with the two-prong variable, z,
to be rather weak. The two leading subjets in 3 (10) TeV
QCD jets carry more than 75% of the jet energy in only
80% (84%) of the cases. Figures 2 (bottom row) and 3
(right) confirm this expectation.

The only other jet-substructure variable that is inde-
pendent of the mass, for two-prong kinematics, is z itself.
To leading order, after fixing the mass, W jets have a flat
z distribution while for QCD jets it is proportional to 1/z
for small z’s [21]. It is therefore possible to apply a lower
cut on z to enhance the signal over the corresponding
QCD background [26], or alternatively apply an upper
cut on z to obtain a background-enriched sample to study
massive QCD jets or have a control region. However, the
impact of the lost neutrals on the signal and background
e�ciencies is quite minor as the z distributions of both
the signal and background are pretty broad to start with.
This is also being reflected by the fact that cutting on z
is not particularly useful for rejecting the background.

Zero-cone-size, longitudinal jet information.—

Future HCALs are envisioned to have an improved granu-
larity not only in the transverse but also in the longitudi-
nal direction (see, e.g., Ref. [11]), allowing to measure the
longitudinal energy deposition profile. In principle, the
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FIG. 3. Standard deviation of the relative o↵set in the
corrected jet mass (for jets with truth mass in the range
75 ± 5 GeV) as a function of z, for boosted W jets (thin
blue) and QCD jets (thick red) with jet pT = 3 TeV (solid)
and 10 TeV (dotted). On the left we use jets with cone size
R = 3mW /pT , while on the right we use large cones (the Su-
dakov peak case). In both cases Rsubjet = (3/4)mW /pT . The
mean o↵set (not shown) is much smaller than the standard
deviation.

profile is sensitive to the energy depositions of individual
hadrons. Separation between them is slightly aided by
the fact that the shower starts at a random depth for each
hadron. The relevant so-called pion interaction length is
comparable to �A [11]. Remarkably, the longitudinal in-
formation is available even if the hadrons are completely
collinear, when the conventional jet substructure vari-
ables, all of which depend on transverse separation, are
powerless.

In practice, extracting individual contributions from a
measured profile may be challenging, as there will still be
a significant degree of shower overlap, the shower shapes
vary significantly event-by-event [9, 27], and the granu-
larity will still be a limiting factor. We will not analyze
this in detail, but discuss how information obtained in
this way can potentially be useful.

If each hard parton produced one hard hadron and a
few softer ones, the longitudinal profile of a boosted W
jet, for example, would typically contain two relatively
large humps, while a QCD jet would lead to a single and
more energetic one. That would likely be easy to see. In
practice, each high-pT parton produces several compara-
bly energetic hadrons, so the picture is more complicated,
but one might still hope that some information about the
underlying partonic structure remains. One could imag-
ine variables such as the pT fraction carried by the leading
hadron, or the number of hadrons one needs to sum to
account for a certain fraction of the jet pT . If one of the
hadrons is a ⇡0(! ��) and thus deposits all of its energy
in the ECAL, it can be accounted for in a trivial way and
only make the interpretation of the HCAL profile easier.

One might hope that the availability of the longitudi-
nal profile makes the loss of transverse information less
severe of an issue. However, we find that the longitudinal
information, even at the truth level (i.e., before simulat-

jet mass (truth mass = 75 ± 5 GeV), jet pT = 3 TeV (solid) , 10 TeV (dotted).

Bressler, Flacke, Kats, Lee & GP (15)

R = 3mW /pT R = 9mW /pT
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♦ Why background fluctuation in red depend strongly on R ?

resummation fixed order

CDF Collaboration (11) 

multiple emission important
dominated by 1st emission

Location of peak is hard to calculate but depends on R & pT; 
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♦ Changing R moves the W mass relative to the peak:

small R, W is “massive”, QCD~signal
large R, W is “massless”

Almeida, Lee, GP, I. Sung & Virzi (08) 
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FIG. 2. Jet mass based on the two leading subjets: m12

(truth value, required to be 75 ± 5 GeV, thin black), m12,N/

(without the neutrals, dotted green) and m12,corr (corrected,
thick blue) for boosted W jets (left) and QCD jets (right)
with jet pT = 10 TeV, for cone sizes R = 3mW /pT (top row)
and R = 15mW /pT (bottom row). In all cases Rsubjet =
(3/4)mW /pT .

are still controlled by the two-prong limit, there should
not be much of an e↵ect. However, for the QCD jets,
which are now a↵ected by a large number of emissions,
we expect the correlation with the two-prong variable, z,
to be rather weak. The two leading subjets in 3 (10) TeV
QCD jets carry more than 75% of the jet energy in only
80% (84%) of the cases. Figures 2 (bottom row) and 3
(right) confirm this expectation.

The only other jet-substructure variable that is inde-
pendent of the mass, for two-prong kinematics, is z itself.
To leading order, after fixing the mass, W jets have a flat
z distribution while for QCD jets it is proportional to 1/z
for small z’s [21]. It is therefore possible to apply a lower
cut on z to enhance the signal over the corresponding
QCD background [26], or alternatively apply an upper
cut on z to obtain a background-enriched sample to study
massive QCD jets or have a control region. However, the
impact of the lost neutrals on the signal and background
e�ciencies is quite minor as the z distributions of both
the signal and background are pretty broad to start with.
This is also being reflected by the fact that cutting on z
is not particularly useful for rejecting the background.

Zero-cone-size, longitudinal jet information.—

Future HCALs are envisioned to have an improved granu-
larity not only in the transverse but also in the longitudi-
nal direction (see, e.g., Ref. [11]), allowing to measure the
longitudinal energy deposition profile. In principle, the
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FIG. 3. Standard deviation of the relative o↵set in the
corrected jet mass (for jets with truth mass in the range
75 ± 5 GeV) as a function of z, for boosted W jets (thin
blue) and QCD jets (thick red) with jet pT = 3 TeV (solid)
and 10 TeV (dotted). On the left we use jets with cone size
R = 3mW /pT , while on the right we use large cones (the Su-
dakov peak case). In both cases Rsubjet = (3/4)mW /pT . The
mean o↵set (not shown) is much smaller than the standard
deviation.

profile is sensitive to the energy depositions of individual
hadrons. Separation between them is slightly aided by
the fact that the shower starts at a random depth for each
hadron. The relevant so-called pion interaction length is
comparable to �A [11]. Remarkably, the longitudinal in-
formation is available even if the hadrons are completely
collinear, when the conventional jet substructure vari-
ables, all of which depend on transverse separation, are
powerless.

In practice, extracting individual contributions from a
measured profile may be challenging, as there will still be
a significant degree of shower overlap, the shower shapes
vary significantly event-by-event [9, 27], and the granu-
larity will still be a limiting factor. We will not analyze
this in detail, but discuss how information obtained in
this way can potentially be useful.

If each hard parton produced one hard hadron and a
few softer ones, the longitudinal profile of a boosted W
jet, for example, would typically contain two relatively
large humps, while a QCD jet would lead to a single and
more energetic one. That would likely be easy to see. In
practice, each high-pT parton produces several compara-
bly energetic hadrons, so the picture is more complicated,
but one might still hope that some information about the
underlying partonic structure remains. One could imag-
ine variables such as the pT fraction carried by the leading
hadron, or the number of hadrons one needs to sum to
account for a certain fraction of the jet pT . If one of the
hadrons is a ⇡0(! ��) and thus deposits all of its energy
in the ECAL, it can be accounted for in a trivial way and
only make the interpretation of the HCAL profile easier.

One might hope that the availability of the longitudi-
nal profile makes the loss of transverse information less
severe of an issue. However, we find that the longitudinal
information, even at the truth level (i.e., before simulat-

jet mass (truth mass = 75 ± 5 GeV), jet pT = 3 TeV (solid) , 10 TeV (dotted).
Bressler, Flacke, Kats, Lee & GP (15)

R = 3mW /pT R = 9mW /pT

W is “massless” ~    - jet⌧W is “massive”, QCD ~ signal

Different region of superboosted jets => different behaviour of BG, new type of substructure. 
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♦ Fragmentation fractions for g/u/d is different than the others.

Especially when comparing the neutrals: (m⇡ ⌧ mN )

♦ New handle: 

hfW!cs̄, W!ud̄/QCD
N i = 21, 14, �fW!cs̄, W!ud̄/QCD

N = 16, 14

✓
W (cs)� jet

W (ud), QCD � jet

◆

corr.ratio

⇠ 1.5

♦ Can be calibrated using boosted top events.  
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Figure 2: Dependence of the asymmetries for the LHC on the lepton pt for three di↵erent scale

choices, calculated by POWHEG. The left and right panel show Ac and Al respectively and

middle one shows the ratio Al/Ac. These plots show the ideal SM scenario where no cuts have

been applied.

3

Conclusions

♦ Finite hadronic shower size implies that jet substructure of very 

energetic jet is inaccessible via HCAL = superboosted regime.

♦ Fluct.: O(15%) information carried by “stable” neutrals is lost.

Dependence on how asymmetric are the jet subcomponents.

25

♦ Opportunities: 
(i) when W/Z/h are lighter than Sudakov peak new type of substructure 
phys. emerges.
(ii) flavor dependence of neutral component => potential new “tagger”.
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Why are they common in QCD (strong interaction)?


(soft-collinear singularities)

♦A state with extra 0-energy gluon is unchanged; probability to 

emit a soft gluon diverges => soft singularities. (E � mhadron ⇠ ⇤QCD)
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Why are they common in QCD (strong interaction)?


(soft-collinear singularities)

♦A state with extra 0-energy gluon is unchanged; probability to 

emit a soft gluon diverges => soft singularities. (E � mhadron ⇠ ⇤QCD)
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Why are they common in QCD (strong interaction)?


(soft-collinear singularities)

♦A state with extra 0-energy gluon is unchanged; probability to 

emit a soft gluon diverges => soft singularities. (E � mhadron ⇠ ⇤QCD)
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Why are they common in QCD (strong interaction)?


(soft-collinear singularities)

♦A state with extra 0-energy gluon is unchanged; probability to 

emit a soft gluon diverges => soft singularities. (E � mhadron ⇠ ⇤QCD)
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jet mass & jet substructure QCD story 

♦ Jet mass definition:

m2
J = (

P
i2R Pi)2, Pi2 = 0 , for EJ � mJ � ⇤QCD .t-angular info’ encoded in decay products

• When other quarks produced:    

• Tops decay before hadronize:    

♦QCD: soft collinear singularities => narrow jets are “light”. 

a) q

q

b) q

q

c) q

q

π, K, p, ...

d)

Fig. 5: Emission pattern from a qq̄ event, with first a single gluon (a), then multiple emissions of gluons both
from the qq̄ pair and from the previously emitted gluons (b), followed by some process, ‘hadronization’, that
causes hadrons to be produced from the gluons, giving an event (c), that structurally resembles a real event (d)
(e+e− → Z →hadrons at LEP in the OPAL detector)

which, numerically, corresponds to 〈Ng〉 $ 2. This is neither small numerically, nor parametrically
(∼ 1/αs). Does this render perturbation completely useless for anything other than total cross sections?

We can follow two possible avenues to help answer this question. One approach is to calculate
the next order, and see what structure it has. Alternatively we can ask whether there are final-state
observables that have a better-behaved perturbative series than ‘the mean number of gluons’.

2.3.1 Gluon (and hadron) multiplicity
Once one gluon has been emitted, it can itself emit further gluons. To understand what the gluon multi-
plicity might look like to higher orders, it’s useful to write down the general pattern of emission of a soft
gluon both from a quark and from a gluon, which is essentially independent of the process that produced
the ‘emitter’:

p

k
$

2αsCF

π

dE

E

dθ

θ
, (26a)

p

k
θ $

2αsCA

π

dE

E

dθ

θ
. (26b)

These expressions are valid when the emitted gluon is much lower in energy than the emitter, k & p,
and when the emission angle θ is much smaller than the angle between the emitter and any other parton
in the event (this is known as the condition of angular ordering [21]). The structure of emission of a soft
gluon is almost identical from a quark and from a gluon, except for the substitution of the CF = 4/3
colour factor in the quark case with the CA = 3 colour factor in the gluon case.

Since quarks and gluons emit in similar ways, every gluon that is emitted from the quark can itself
emit further gluons, and so forth. Most of the emissions will either be in almost the same direction as the
original quark (due to the collinear divergence) and/or be soft. This is represented in Figs. 5(a) and (b)
(for simplicity we’ve not shown gluons splitting to qq̄ pairs, which also occurs, with just a collinear
divergence). This still only gives a description of events in terms of quarks and gluons, whereas real
events consist of hadrons. Though hadronization, the transition from quarks and gluon to hadrons is not
something that we know how to calculate from first principles, one idea that has had some success is
Local Parton Hadron Duality (LPHD) (see, e.g., Ref. [22]). It states that after accounting for all gluon
and quark production down to scales ∼ Λ, the transition from partons to hadrons is essentially local in
phase space. Thus the hadron directions and momenta will be closely related to the partons’, and the
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from the qq̄ pair and from the previously emitted gluons (b), followed by some process, ‘hadronization’, that
causes hadrons to be produced from the gluons, giving an event (c), that structurally resembles a real event (d)
(e+e− → Z →hadrons at LEP in the OPAL detector)

which, numerically, corresponds to 〈Ng〉 $ 2. This is neither small numerically, nor parametrically
(∼ 1/αs). Does this render perturbation completely useless for anything other than total cross sections?

We can follow two possible avenues to help answer this question. One approach is to calculate
the next order, and see what structure it has. Alternatively we can ask whether there are final-state
observables that have a better-behaved perturbative series than ‘the mean number of gluons’.

2.3.1 Gluon (and hadron) multiplicity
Once one gluon has been emitted, it can itself emit further gluons. To understand what the gluon multi-
plicity might look like to higher orders, it’s useful to write down the general pattern of emission of a soft
gluon both from a quark and from a gluon, which is essentially independent of the process that produced
the ‘emitter’:
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These expressions are valid when the emitted gluon is much lower in energy than the emitter, k & p,
and when the emission angle θ is much smaller than the angle between the emitter and any other parton
in the event (this is known as the condition of angular ordering [21]). The structure of emission of a soft
gluon is almost identical from a quark and from a gluon, except for the substitution of the CF = 4/3
colour factor in the quark case with the CA = 3 colour factor in the gluon case.

Since quarks and gluons emit in similar ways, every gluon that is emitted from the quark can itself
emit further gluons, and so forth. Most of the emissions will either be in almost the same direction as the
original quark (due to the collinear divergence) and/or be soft. This is represented in Figs. 5(a) and (b)
(for simplicity we’ve not shown gluons splitting to qq̄ pairs, which also occurs, with just a collinear
divergence). This still only gives a description of events in terms of quarks and gluons, whereas real
events consist of hadrons. Though hadronization, the transition from quarks and gluon to hadrons is not
something that we know how to calculate from first principles, one idea that has had some success is
Local Parton Hadron Duality (LPHD) (see, e.g., Ref. [22]). It states that after accounting for all gluon
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How difficult of a problem is it ? 
Hadronic shower size

♦ The opening angle of boosted Higgs decay product, 
 , for  GeV is of O(1%).θbb̄ ∼ mH /mt′ mt′ ∼ 10000

♦ Hadronic calorimeter is built to contain all hadrons produced. 

For W jet with pT  ~ 3 (10) TeV - 

2 leading hadrons energies = 1.2 (2.7), 0.7 (1.5) TeV; 

2 leading “stable”-neutrals energies = 0.6 (1.3), 0.2 (0.5) TeV. 

♦ Hadronicaly decaying W/Z/h - jets produce energetic hadrons:


