
Massive neutrinos in cosmology
and the weakly non-linear regime

Mathias Garny (TUM Munich)

14.10.20

2011.03050, 2008.04943, 1805.12203, 1408.2995

with Thomas Konstandin, Julien Lesgourgues, Laura Sagunski, Petter
Taule, Matteo Viel, . . .



Laboratory constraints on neutrino mass scale

Solar, reactor, atmospheric, and accelerator neutrino oscillations

∑
mν >

{
58 meV normal hierarchy
108 meV inverted hierarchy

Tritium β-decay endpoint spectroscopy (KATRIN) PRL123(2019)221802 1909.06048

∑
mν < 3× 1.1eV 90%C.L.

Exciting interplay with indirect constraints from structure formation



Power spectrum of density perturbations
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δ(x , z) = ρ(x , z)/ρ̄(z)− 1

〈δ(k, z)δ(k′, z)〉 = δ(3)(k + k′)P(k , z)

∆2(k , z) = 4πk3P(k , z)
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Cosmic neutrino background

I Redshifted relativistic Fermi-Dirac distribution due to neutrino
decoupling at T ∼ MeV� mν

f0(p) =
1

ep/Tν(z) + 1

with

Tν(z) '
(

4

11

)1/3

Tγ(z) ' 1.96K×(1+z) ' 0.17 meV/kB×(1+z)

I Average momentum 〈p〉 ' 3.15Tν(z) becomes smaller than mass
mν for redshift

znr ' 189
mν

100 meV

I Even though CνB neutrinos are non-relativistic today, large thermal
velocity compared to cold dark matter (CDM) tends to wash out

structures below comoving free-streaming length λFS =
∫ t dt′

a(t′) 〈
p
E 〉



Hot Dark Matter (cosmic neutrinos)
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Cosmic neutrino background

I Neutrino fraction at z � znr

fν =
Ων

Ωm
=

1

Ω0
mh

2
×

∑
mν

93.14eV

∑
mν [eV] 0.06 0.15 0.21 0.3
fν 0.0045 0.0112 0.0156 0.0221

I Growth of linear density perturbations during matter domination

δ(k , t) ∝
{

a(t) 2π/k � λFS

a(t)1−3fν/5 2π/k � λFS

with

λFS(z) ' 350Mpc

√
1 + z
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√
0.1
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mh

2
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Power spectrum suppression for massive neutrinos
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cf. e.g. Hannestad 2003; Crotty, Lesgourgues, Pastor 2004; Hannestad, Raffelt 2004; Hannestad, Tu, Wong 2006
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Figure 1. Top: Data points show inferences of the 3D linear matter power spectrum at z = 0 from Planck CMB data on the largest scales,

SDSS galaxy clustering on intermediate scales, SDSS Lyα clustering and DES cosmic shear data on the smallest scales. In cases where

error bars in the k-direction are present, we have used the method of Tegmark & Zaldarriaga (2002) to calculate a central 60% quantile

of the region to which each data point is sensitive. In other cases, data points represent the median value of the measurement. The solid

black line is the theoretical expectation given the best-fit Planck 2018 ΛCDM model (this model also enters the computation of the data

points themselves). The dotted line for reference shows the theoretical spectrum including non-linear effects. Bottom: deviation of the

data from the Planck best fit ΛCDM 3D matter power spectrum.

around a central model. The four cosmological parameters
are the scalar spectral index ns, the RMS matter fluctuations
amplitude today in linear theory σ8, the matter density to-
day Ωm, and the expansion rate today H0. The astrophysical
parameters (all at z = 3) are the normalization temperature
of IGM T0, the logarithmic slope of the δ dependence of the
IGM temperature γ, the effective optical depth of the Lyα

absorption Aτ and the logarithmic slope ητ of the redshift
dependence of Aτ . The central (also dubbed best-guess) sim-
ulation is based upon a fiducial model corresponding to the
Planck Collaboration et al. (2014) best-fit cosmology. The
simulation grid, however, allows us to test other cosmologies.

In Table 1, we list the values of the parameters used
in the best-guess simulation, as well as the corresponding

MNRAS 000, 1–7 (2015)

Projection on linear power spectrum at z = 0 (model dep.!) Palanque-Delabrouille et al 1905.08103

P(k) ∼ |δk |2
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Figure 1. Top: Data points show inferences of the 3D linear matter power spectrum at z = 0 from Planck CMB data on the largest scales,

SDSS galaxy clustering on intermediate scales, SDSS Lyα clustering and DES cosmic shear data on the smallest scales. In cases where

error bars in the k-direction are present, we have used the method of Tegmark & Zaldarriaga (2002) to calculate a central 60% quantile

of the region to which each data point is sensitive. In other cases, data points represent the median value of the measurement. The solid

black line is the theoretical expectation given the best-fit Planck 2018 ΛCDM model (this model also enters the computation of the data

points themselves). The dotted line for reference shows the theoretical spectrum including non-linear effects. Bottom: deviation of the

data from the Planck best fit ΛCDM 3D matter power spectrum.

around a central model. The four cosmological parameters
are the scalar spectral index ns, the RMS matter fluctuations
amplitude today in linear theory σ8, the matter density to-
day Ωm, and the expansion rate today H0. The astrophysical
parameters (all at z = 3) are the normalization temperature
of IGM T0, the logarithmic slope of the δ dependence of the
IGM temperature γ, the effective optical depth of the Lyα

absorption Aτ and the logarithmic slope ητ of the redshift
dependence of Aτ . The central (also dubbed best-guess) sim-
ulation is based upon a fiducial model corresponding to the
Planck Collaboration et al. (2014) best-fit cosmology. The
simulation grid, however, allows us to test other cosmologies.

In Table 1, we list the values of the parameters used
in the best-guess simulation, as well as the corresponding

MNRAS 000, 1–7 (2015)

Planck Collaboration: Cosmological parameters
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Fig. 1. Planck 2018 temperature power spectrum. At multipoles ` ≥ 30 we show the frequency-coadded temperature spectrum
computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters fixed to a best fit assuming
the base-ΛCDM cosmology. In the multipole range 2 ≤ ` ≤ 29, we plot the power spectrum estimates from the Commander
component-separation algorithm, computed over 86 % of the sky. The base-ΛCDM theoretical spectrum best fit to the Planck
TT,TE,EE+lowE+lensing likelihoods is plotted in light blue in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1σ diagonal uncertainties, including cosmic variance (approximated as Gaussian) and not
including uncertainties in the foreground model at ` ≥ 30. Note that the vertical scale changes at ` = 30, where the horizontal axis
switches from logarithmic to linear.

the best-fit temperature data alone, assuming the base-ΛCDM
model, adding the beam-leakage model and fixing the Galactic
dust amplitudes to the central values of the priors obtained from
using the 353-GHz maps. This is clearly a model-dependent pro-
cedure, but given that we fit over a restricted range of multipoles,
where the TT spectra are measured to cosmic variance, the re-
sulting polarization calibrations are insensitive to small changes
in the underlying cosmological model.

In principle, the polarization efficiencies found by fitting the
T E spectra should be consistent with those obtained from EE.
However, the polarization efficiency at 143 × 143, cEE

143, derived
from the EE spectrum is about 2σ lower than that derived from
T E (where the σ is the uncertainty of the T E estimate, of the
order of 0.02). This difference may be a statistical fluctuation or
it could be a sign of residual systematics that project onto cali-
bration parameters differently in EE and T E. We have investi-
gated ways of correcting for effective polarization efficiencies:
adopting the estimates from EE (which are about a factor of
2 more precise than T E) for both the T E and EE spectra (we
call this the “map-based” approach); or applying independent

estimates from T E and EE (the “spectrum-based” approach). In
the baseline Plik likelihood we use the map-based approach,
with the polarization efficiencies fixed to the efficiencies ob-
tained from the fits on EE:

(
cEE

100

)
EE fit

= 1.021;
(
cEE

143

)
EE fit

=

0.966; and
(
cEE

217

)
EE fit

= 1.040. The CamSpec likelihood, de-
scribed in the next section, uses spectrum-based effective polar-
ization efficiency corrections, leaving an overall temperature-to-
polarization calibration free to vary within a specified prior.

The use of spectrum-based polarization efficiency estimates
(which essentially differs by applying to EE the efficiencies
given above, and to T E the efficiencies obtained fitting the T E
spectra,

(
cEE

100

)
TE fit

= 1.04,
(
cEE

143

)
TE fit

= 1.0, and
(
cEE

217

)
TE fit

=

1.02), also has a small, but non-negligible impact on cosmo-
logical parameters. For example, for the ΛCDM model, fitting
the Plik TT,TE,EE+lowE likelihood, using spectrum-based po-
larization efficiencies, we find small shifts in the base-ΛCDM
parameters compared with ignoring spectrum-based polariza-
tion efficiency corrections entirely; the largest of these shifts
are +0.5σ in ωb, +0.1σ in ωc, and +0.3σ in ns (to be com-
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Figure 2. Power spectrum multipoles measured from the DR16
CMASS+eBOSS LRG sample, monopole (orange symbols), quadrupole
(green symbols) and hexadecapole (purple symbols). The filled and empty
symbols correspond to measurements from the NGC and SGC, respec-
tively. The empty symbols are displaced horizontally for visibility. The
black dashed and dotted lines correspond to the clustering of the mean of
the 1000 realisations of the EZMOCKS with all the systematics applied, for
NGC and SGC, respectively. The amplitude mismatch, more evident for the
monopole, is due to the effect of completeness on the normalisation factor
of the power for data and mocks.

2.2.1 EZMOCKS

The EZMOCKS consist of a set of 1000 independent realisations
using the fast approximative method based on Zeldovich approx-
imation (Chuang et al. 2015) with the main purpose of estimat-
ing the covariance of the data. Such mocks consist of light-cones
with the radial and angular geometry of the CMASS+eBOSS LRG
dataset, with observational effects, such as fibre collision, redshift
failures and completeness. These light-cones are drawn from 4 and
5 snapshots at different redshifts, for CMASS and eBOSS galaxies,
respectively. A full description of these mocks is presented in Zhao
et al. (2020). These mocks are generated using fast-techniques,
which are a good approximation of an actual N-body simulation
at large scales, but which eventually fail to reproduce the complex
gravity interaction and peculiar motions at small scales. Because
of this, we use them to estimate the covariance matrix of the data,
but their performance for reproducing physical effects such as BAO
and RSD is not guaranteed at sub-percent precision level. Thus, we
do not estimate the potential modelling systematics based on these
mocks, but on full N-body mocks. However these mocks are useful
to estimate the relative change on cosmological parameters when
applying each of these observational features. We use them to quan-
tify the potential impact of observational systematics in the final
data results. In order to analyse these mocks we use the covariance
drawn from themselves.

2.2.2 NSERIES mocks

The NSERIES mocks are full N-body mocks populated with a fixed
Halo Occupation Distribution (HOD) model similar to the one cor-
responding to the DR12 BOSS NGC CMASS LRGs. Their effec-
tive redshift, zeff = 0.56 is slightly smaller compared to the ef-

fective redshift of the DR16 CMASS+eBOSS LRG sample, zeff =
0.698, as they were initially designed to test the potential system-
atics on the modelling used for the BOSS CMASS sample. They
were generated out of 7 independent periodic boxes of 2.6h−1Gpc
side, projected through 12 different orientations and cuts, per box.
In total, after these projections and cuts 84 pseudo-independent re-
alisations were produced. The mass resolution of these boxes is
1.5 × 1011 M�/h and with 20483 particles per box. The large ef-
fective volume, 84 × 3.67 [Gpc]3 makes them ideal to test poten-
tial BAO and RSD systematics generated by the analysis pipeline,
as to test the response of the arbitrary choice of reference cosmol-
ogy on the BAO and full shape model templates, in the galaxy cat-
alogues when converting redshifts into distances, and its impact
on the inferred cosmological parameters. We use the NGC MD-
PATCHY mocks (Kitaura et al. 2016) to describe the covariance of
these mocks. We rescale the covariance terms by 10% based on the
ratio of particles, as the MD-PATCHY mocks have fewer particles
than the NSERIES mocks due to veto effects on DR12 CMASS data,
which was also imprinted into the MD-PATCHY mocks but not
into NSERIES mocks. When we run reconstruction on the NSERIES

mocks, we consistently also use the covariance from reconstructed
MD-PATCHY mocks.

2.2.3 OUTERRIM-HOD mocks

The OUTERRIM-HOD mocks are drawn from the OUTERRIM N-
body simulation (Heitmann et al. 2019) and populated with dif-
ferent types of HOD models (see Rossi et al. 2020 for a full de-
scription), some of them similar to the LRG sample, but also oth-
ers having different properties. The original simulation corresponds
to a single cubic box realisation with periodic boundary condi-
tions whose size is 3h−1Gpc. This box is divided into 27 cu-
bic sub-boxes of 1h−1Gpc per side, without the periodicity of
cubic-boxes. For those galaxy catalogues whose HOD models are
close to the actual data sample studied here (those labelled ‘Hearin-
Threshold-2’, ‘Leauthaud-Threshold-2’ and ‘Tinker-Threshold-2’,
see Rossi et al. 2020 for a description of all models), we place
the galaxies in a larger box of 3h−1Gpc per side with empty
space between the galaxies and the box edges, and generate a ran-
dom catalogue with the same distribution but with no clustering. In
this way when performing the discrete Fourier transform the non-
periodicity conditions do not impact the results. We refer to this
process as padding. Additionally, we also apply reconstruction on
these padded catalogues.

The effective volume of each sub-box of the ‘Hearin-
Threshold-2’, ‘Leauthaud-Threshold-2’ and ‘Tinker-Threshold-2’,
corresponds to ∼ 1.1 Gpc3. For the rest of the HOD-models, the
effective volume varies between 2.1 and 2.7 Gpc3, as the number
density of objects, and consequently n̄P , is much higher.

In order to deal with the covariance of these mocks we have
used the covariance derived from the EZMOCKS and re-scaled
by the difference in particle number. These re-scalings corre-
spond to the factors 1.0, 0.64, and 9 for ‘Standard’, ‘Threshold-1’
and ‘Threshold-2’, respectively, for Hearin, Leauthaud and Tinker
HOD-types. For Zheng HOD-type we use 0.60, 2.37 and 0.60, for
‘Standard’, ‘Threshold1’ and ‘Threshold2’, respectively.

2.3 Reference Cosmology

In this paper we choose a set of cosmological parameters within the
flat ΛCDM model to define a reference cosmology, which is used

MNRAS 000, 1–39 (2020)
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Figure 18: 1D Lyα forest power spectrum for the analysis described in this paper. Error bars in-
clude statistics and systematics added in quadrature. The solid curves show the best-fit model when
considering Lyα data alone. The oscillations arise from Lyα-Si III correlations, which occur at a
wavelength separation ∆λ = 9.2 Å.

Table 6: Best-fit value and 68% confidence levels of the cosmological parameters of the model fitted
to the flux power spectrum. The dataset is split in several subsamples based on the spectral resolu-
tion, the SNR per pixel, the QSO catalog (DR9, post DR9), the spectrograph used and the Galactic
hemisphere (NGC, SGC).

Parameter Reference σλ < 80 km s−1 SNR > 4 MJD < 55753 MJD > 55573
T0 (z=3) (103K) 10.3 ± 1.9 12.0 ± 2.0 11.7 ± 1.9 8.6 ± 2.4 11.4 ± 1.9
γ 0.8 ± 0.1 0.8 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.8 ± 0.1
σ8 0.820 ± 0.021 0.826 ± 0.022 0.833 ± 0.020 0.850 ± 0.029 0.819 ± 0.021
ns 0.955 ± 0.005 0.957 ± 0.006 0.951 ± 0.008 0.945 ± 0.007 0.954 ± 0.006
Ωm 0.269 ± 0.009 0.270 ± 0.010 0.276 ± 0.012 0.280 ± 0.013. 0.271 ± 0.011
H0 (km s−1 Mpc−1) 67.1 ± 1.0 67.0 ± 1.0 67.2 ± 1.0 67.3 ± 1.0 67.0 ± 1.0

Spectro #1 Spectro #2 SGC NGC
T0 (z=3) (103K) 10.3 ± 1.9 11.2 ± 2.1 11.3 ± 3.1 10.2 ± 1.9
γ 0.9 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1
σ8 0.826 ± 0.023 0.834 ± 0.023 0.794 ± 0.029 0.825 ± 0.02
ns 0.963 ± 0.006 0.939 ± 0.007 0.960 ± 0.011 0.956 ± 0.005
Ωm 0.262 ± 0.010 0.286 ± 0.014 0.263 ± 0.013. 0.271 ± 0.010
H0 (km s−1 Mpc−1) 66.9 ± 1.0 67.3 ± 1.0 67.2 ± 1.0 67.1 ± 1.0

– 27 –
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Figure 1. Top: Data points show inferences of the 3D linear matter power spectrum at z = 0 from Planck CMB data on the largest scales,

SDSS galaxy clustering on intermediate scales, SDSS Lyα clustering and DES cosmic shear data on the smallest scales. In cases where

error bars in the k-direction are present, we have used the method of Tegmark & Zaldarriaga (2002) to calculate a central 60% quantile

of the region to which each data point is sensitive. In other cases, data points represent the median value of the measurement. The solid

black line is the theoretical expectation given the best-fit Planck 2018 ΛCDM model (this model also enters the computation of the data

points themselves). The dotted line for reference shows the theoretical spectrum including non-linear effects. Bottom: deviation of the

data from the Planck best fit ΛCDM 3D matter power spectrum.

around a central model. The four cosmological parameters
are the scalar spectral index ns, the RMS matter fluctuations
amplitude today in linear theory σ8, the matter density to-
day Ωm, and the expansion rate today H0. The astrophysical
parameters (all at z = 3) are the normalization temperature
of IGM T0, the logarithmic slope of the δ dependence of the
IGM temperature γ, the effective optical depth of the Lyα

absorption Aτ and the logarithmic slope ητ of the redshift
dependence of Aτ . The central (also dubbed best-guess) sim-
ulation is based upon a fiducial model corresponding to the
Planck Collaboration et al. (2014) best-fit cosmology. The
simulation grid, however, allows us to test other cosmologies.

In Table 1, we list the values of the parameters used
in the best-guess simulation, as well as the corresponding

MNRAS 000, 1–7 (2015)

Projection on linear power spectrum at z = 0 (model dep.!) 1905.08103

Compilation of LSS measurements P(k) ∼ |δk |2, δ = ρ−ρ̄
ρ̄



Baryon Acoustic Oscillations (BAO)

2dFGRS (Percival et al) MNRAS 327:1297,2001 astro-ph/0105252
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Figure 3. DR16 CMASS+eBOSS LRG power spectrum measurements for the pre- (left panel) and post-reconstructed catalogue (right panel). The orange
points display the power spectrum monopole and the green points the µ2-moment (see Eq. 25 for definition). The associated errors are drawn from the
covariance of 1000 mocks and the black solid line represent the best-fitting solution (quoted in Table 3 using the anisotropic templated at the fixed values of
Σ‖ = 7.0 h−1 Mpc and Σ⊥ = 2.0 h−1 Mpc for post-recon and Σ‖ = 9.4 h−1 Mpc and Σ⊥ = 4.8 h−1 Mpc for pre-recon). The bottom sub-panels
show the difference between model and measurement divided by the 1-σ errors.

Table 3. Impact of different parameters and data-vectors choices when performing a BAO analysis on the DR16 CMASS+eBOSS LRG dataset using the
pipeline described in §3.1. The Fourier space post-recon represent the main BAO results of this paper and correspond to the model displayed in the right panel
of Fig 3. The configuration space results correspond to the analysis described in Bautista et al. 2020. The rest of cases (see text for a full description) represent
variations of the standard pipeline. For each case we only report the physical BAO scaling parameters and their corresponding χ2. For the cases where the Σ‖
and Σ⊥ are varied, we find that when these are treated as free parameters (with a wide uninformative prior) we obtain Σfree

‖ = 2.2± 1.7, Σfree
⊥ = 2.3± 1.7;

whereas under the Gaussian prior we find ΣGauss
‖ = 3.5 ± 1.9 (Gaussian prior: 7 ± 3) and ΣGauss

⊥ = 2.0 ± 1.4 (Gaussian prior: 2 ± 3). The error-bars
correspond to 1σ and only include the statistical error budget.

case α‖ α⊥ χ2/d.o.f.

Pk pre-recon 0.939± 0.036 1.043± 0.032 96/(112− 17)

Pk post-recon 0.956± 0.024 1.025± 0.019 108/(112− 17)

ξs pre-recon 0.954± 0.035 1.034± 0.025 41/(40− 9)
ξs post-recon 0.958± 0.026 1.024± 0.019 41/(40− 9)

(Pk + ξs) post-recon 0.956± 0.024 1.024± 0.018 −

NGC-only pre-recon 0.932± 0.046 1.054± 0.043 46/(56− 10)

NGC-only post-recon 0.947± 0.026 1.042± 0.024 65/(56− 10)

SGC-only pre-recon 0.928± 0.088 1.058± 0.091 46/(56− 10)
SGC-only post-recon 0.996± 0.113 0.992± 0.038 40/(56− 10)

no-mask post-recon 0.953± 0.022 1.030± 0.016 109/(112− 17)

no-wsyswcol post-recon 0.950± 0.027 1.023± 0.020 87/(112− 17)
Isotropic template post-recon 0.941± 0.027 1.030± 0.023 126/(112− 18)

Isotropic template order-5 post-recon 0.941± 0.027 1.027± 0.024 102/(112− 26)

Order-5 post-recon 0.959± 0.024 1.018± 0.021 99/(112− 25)
Σ‖,⊥ Free post-recon 0.949± 0.019 1.027± 0.019 101/(112− 19)

Σ‖,⊥ Gaussian prior post-recon 0.950± 0.020 1.027± 0.019 100/(112− 19)

+ Hexadecapole pre-recon 0.914± 0.035 1.054± 0.031 190/(168− 22)

+ Hexadecapole post-recon 0.949± 0.026 1.025± 0.020 157/(168− 22)

ΘOR (re-scaled to fiducial) 0.962± 0.026 1.009± 0.018 120/(112− 17)
ΘX (re-scaled to fiducial) 0.959± 0.025 1.022± 0.020 109/(112− 17)

ΘY (re-scaled to fiducial) 0.962± 0.025 1.024± 0.020 106/(112− 17)

ΘZ (re-scaled to fiducial) 0.956± 0.024 1.017± 0.017 112/(112− 17)
500 real. in covariance 0.955± 0.025 1.029± 0.019 106/(112− 17)

cal error component. Previously, Ross et al. (2015a) demonstrated
that the amount of BAO information that higher-than-quadrupole
moments add in terms of anisotropic BAO is very small. Indeed we
report as well such findings later in Table 5 when we apply our anal-
ysis to the mocks. However, this is not the case for a FS analysis,

where the hexadecapole is key to break degeneracies between the
anisotropy generated by AP and RSD. We therefore conclude that
the difference between the BAO analyses with and without hexade-
capole are exclusively due to noise fluctuations, and do not corre-
spond to any significant extra BAO information. Because of this,

MNRAS 000, 1–39 (2020)

BOSS DR16 2007.08994

Future: Vera C. Rubin Observatory; Euclid, DESI, ...:

(sub-)percent at BAO scales



Baryon Acoustic Oscillations (BAO)

BAO & FS measurement from eBOSS LRG PS 13

-2
0
2

0 0.10 0.20 0.30

∆P
(l)

/σ

k [hMpc-1]

 0.92

 0.96

 1

 1.04

 1.08

P
(0

) /P
sm

(0
)

 0.9

 0.95

 1

 1.05

 1.1

P
(µ

2 ) /P
sm

(µ
2 )

Pre-reconstruction

-2
0
2

0 0.10 0.20 0.30

∆P
(l)

/σ

k [hMpc-1]

 0.92

 0.96

 1

 1.04

 1.08

P
(0

) /P
sm

(0
)

 0.9

 0.95

 1

 1.05

 1.1

P
(µ

2 ) /P
sm

(µ
2 )

Post-reconstruction

Figure 3. DR16 CMASS+eBOSS LRG power spectrum measurements for the pre- (left panel) and post-reconstructed catalogue (right panel). The orange
points display the power spectrum monopole and the green points the µ2-moment (see Eq. 25 for definition). The associated errors are drawn from the
covariance of 1000 mocks and the black solid line represent the best-fitting solution (quoted in Table 3 using the anisotropic templated at the fixed values of
Σ‖ = 7.0 h−1 Mpc and Σ⊥ = 2.0 h−1 Mpc for post-recon and Σ‖ = 9.4 h−1 Mpc and Σ⊥ = 4.8 h−1 Mpc for pre-recon). The bottom sub-panels
show the difference between model and measurement divided by the 1-σ errors.

Table 3. Impact of different parameters and data-vectors choices when performing a BAO analysis on the DR16 CMASS+eBOSS LRG dataset using the
pipeline described in §3.1. The Fourier space post-recon represent the main BAO results of this paper and correspond to the model displayed in the right panel
of Fig 3. The configuration space results correspond to the analysis described in Bautista et al. 2020. The rest of cases (see text for a full description) represent
variations of the standard pipeline. For each case we only report the physical BAO scaling parameters and their corresponding χ2. For the cases where the Σ‖
and Σ⊥ are varied, we find that when these are treated as free parameters (with a wide uninformative prior) we obtain Σfree

‖ = 2.2± 1.7, Σfree
⊥ = 2.3± 1.7;

whereas under the Gaussian prior we find ΣGauss
‖ = 3.5 ± 1.9 (Gaussian prior: 7 ± 3) and ΣGauss

⊥ = 2.0 ± 1.4 (Gaussian prior: 2 ± 3). The error-bars
correspond to 1σ and only include the statistical error budget.

case α‖ α⊥ χ2/d.o.f.

Pk pre-recon 0.939± 0.036 1.043± 0.032 96/(112− 17)

Pk post-recon 0.956± 0.024 1.025± 0.019 108/(112− 17)

ξs pre-recon 0.954± 0.035 1.034± 0.025 41/(40− 9)

ξs post-recon 0.958± 0.026 1.024± 0.019 41/(40− 9)

(Pk + ξs) post-recon 0.956± 0.024 1.024± 0.018 −

NGC-only pre-recon 0.932± 0.046 1.054± 0.043 46/(56− 10)

NGC-only post-recon 0.947± 0.026 1.042± 0.024 65/(56− 10)

SGC-only pre-recon 0.928± 0.088 1.058± 0.091 46/(56− 10)

SGC-only post-recon 0.996± 0.113 0.992± 0.038 40/(56− 10)

no-mask post-recon 0.953± 0.022 1.030± 0.016 109/(112− 17)

no-wsyswcol post-recon 0.950± 0.027 1.023± 0.020 87/(112− 17)

Isotropic template post-recon 0.941± 0.027 1.030± 0.023 126/(112− 18)

Isotropic template order-5 post-recon 0.941± 0.027 1.027± 0.024 102/(112− 26)

Order-5 post-recon 0.959± 0.024 1.018± 0.021 99/(112− 25)

Σ‖,⊥ Free post-recon 0.949± 0.019 1.027± 0.019 101/(112− 19)

Σ‖,⊥ Gaussian prior post-recon 0.950± 0.020 1.027± 0.019 100/(112− 19)

+ Hexadecapole pre-recon 0.914± 0.035 1.054± 0.031 190/(168− 22)

+ Hexadecapole post-recon 0.949± 0.026 1.025± 0.020 157/(168− 22)

ΘOR (re-scaled to fiducial) 0.962± 0.026 1.009± 0.018 120/(112− 17)

ΘX (re-scaled to fiducial) 0.959± 0.025 1.022± 0.020 109/(112− 17)

ΘY (re-scaled to fiducial) 0.962± 0.025 1.024± 0.020 106/(112− 17)

ΘZ (re-scaled to fiducial) 0.956± 0.024 1.017± 0.017 112/(112− 17)

500 real. in covariance 0.955± 0.025 1.029± 0.019 106/(112− 17)

cal error component. Previously, Ross et al. (2015a) demonstrated
that the amount of BAO information that higher-than-quadrupole
moments add in terms of anisotropic BAO is very small. Indeed we
report as well such findings later in Table 5 when we apply our anal-
ysis to the mocks. However, this is not the case for a FS analysis,

where the hexadecapole is key to break degeneracies between the
anisotropy generated by AP and RSD. We therefore conclude that
the difference between the BAO analyses with and without hexade-
capole are exclusively due to noise fluctuations, and do not corre-
spond to any significant extra BAO information. Because of this,

MNRAS 000, 1–39 (2020)
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Can we understand the (weakly) non-linear regime?

0.01 0.1 1 10 100 103

k [Mpc−1 ]

0.01

0.1

1

10

100

∆
2

(k
)

1018 1016 1014 1012 1010 108 106 104

M [M¯]

Unknown small
scale behavior

Baryon
Acoustic
Oscillations

CDM

WDM(8keV)ADM

Cosmic Cluster Galactic

linear (analytic)
non-linear (simulation)

Kuhlen, Vogelsberger, Angulo 1209.5745

I Motivation: want efficient but precise method to obtain predictions
for a large set of cos. parameters ⇒ perturbative methods
complemented by EFT techniques

I Goal 1: Scrutinize accuracy of (perturbative) approaches for
massive ν cosmologies

I Goal 2: Demonstrate worked example for Lyman-α data in BOSS
range



Neutrino mass vs theoretical error

Euclid forecast vs theoretical errors Audren, Lesgourgues, Bird et. al. 1210.2194
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Perturbation theory for large-scale structure

δ(k , z) =
∑

n

δ(n)(k , z)

=
∑

n

∫

k1,...,kn

δD(k −
∑

ki )Fn(k1, . . . , kn; z) δ(k1, zini ) · · · δ(kn, zini )

Power spectrum

P(k , z) =

Plin︷ ︸︸ ︷
P11(k) +

P1−loop (NLO)︷ ︸︸ ︷
(2P13 + P22)

+ (2P15 + 2P24 + P33)︸ ︷︷ ︸
P2−loop (NNLO)

+ . . .

where Pnm = 〈δ(n)δ(m)〉

e.g. P22 = 2
∫
q
d3q F2(q, k− q; z)2 Pini (q)Pini (|k− q|)



Vlasov-Poisson

I Number of particles dN = f (τ, x ,p)d3xd3p, conf. time
dτ = dt/a

I Vlasov eq

0 =
df

dτ
=

(
∂

∂τ
+

p
am

∂

∂x
− am∇ψ ∂

∂p

)
f (τ, x ,p)

I Poisson eq

∇2ψ(x, τ) =
3

2
ΩmH2δ(x, τ)

I Moments

m

∫
d3p f = ρ = ρ̄(1 + δ), m

∫
d3p

p
am

f = ρu



Fluid description

I Moments of Vlasov eq.

∂δ(x, τ)

∂τ
+∇ · {(1 + δ(x, τ))u(x, τ)} = 0 (continuity)

∂u(x, τ)

∂τ
+Hu + u · ∇u = −∇ψ − 1

ρ
∇j(σijρ) (Euler)

I stress tensor

σij =
1

ρ
m

∫
d3p

pipj
a2m2

f (x ,p, t)− uiuj

I Standard Perturbation Theory (SPT)

→ Pressureless perfect fluid: σij = 0

⇒ rec. relation for kernels Fn(k1, . . . , kn; z) ≈ D(z)nF s
n (k1, . . . , kn)

F s
1 = 1, F s

2 (p,q) =
5

7
+

1

2

p · q
pq

(
p

q
+

q

p

)
+

2

7

(p · q)2

p2q2



Status of SPT
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Viscous fluid

stress tensor

σij = −pδij + η(∇iuj +∇jui −
2

3
∇ · u δij) + ζ∇ · u δij

I p = pressure

I η = shear viscosity

I ζ = bulk viscosity

cf. e.g. Baumann, Nicolis, Senatore, Zaldarriaga 1004.2488



NNLO (2-loop) power spectrum in viscous theory (z = 0)
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NNLO (2-loop) bispectrum in EFT (z = 0)
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Application of (effective) field theory
and resummation methods

I k � 0.1h/Mpc bulk flows (IR)

→ IR resummation ↔ BAO broadening
Baldauf, Mirbabayi, Simonovic, Zaldarriaga, 1504.04366; Blas, MG, Ivanov, Sibiryakov 1605.02149

I k ∼ 1h/Mpc ∼ virial scale (UV)

→ EFT description (eff. viscosity, more contributions at higher order
and in redshift space) e.g. Foreman, Perrier, Senatore 1507.05326; Abolhasani, Mirbabayi,

Pajer 1509.07886; Floerchinger, MG, Tetradis, Wiedemann 1607.03453

→ bias expansion δg = b1δ + b2δ
2 + . . . e.g. Desjacques, Jeong, Schmidt 1611.09787

→ strategy: treat EFT and bias parameters as free nuisance parameters
in fit to data, applied e.g. to BOSS LRG sample (“full-shape analysis”)

Ivanov, Simonovic, Zaldarriaga 1909.05277; d’Amico et al 1909.05271

→ This talk: application to BOSS Lyman-α data for massive neutrinos
MG, Konstandin, Sagunski, Tulin 1805.12203; MG, Konstandin, Sagunski, Viel 2011.03050



Massive neutrino perturbations: linear theory

I Perturbed neutrino distribution function

f (x,q, τ) = f0(q)× (1 + Ψ(x,q, τ))

I Boltzmann equation 0 = df /dτ ⇒
(
∂τ +

q · ∇
ε(q, τ)

)
Ψ(x,q, τ)+

d ln f0
d ln q

(
∂τφ(x, τ)− ε(q, τ)q · ∇

q2
ψ(x, τ)

)
= 0

I Comoving momentum q = a(τ)p = p/(1 + z)

I Comoving energy ε(q, τ) =
√
q2 + a(τ)2m2

ν

I Conformal Newtonian gauge

ds2 = −a2dτ 2(1 + 2ψ(x, τ)) + a2dx2(1− 2φ(x, τ)))

Ma, Bertschinger AJ455(1995) astro-ph/9401007



Massive neutrino perturbations: linear theory

I Multipole moments

Ψ`(k , q, τ) = i`
∫

dΩ

4π
P`(k̂ · q̂)

∫
d3x e ik·x Ψ(x,q, τ)

I Coupled hierarchy

Ψ′0 = −q

ε
Ψ1 − φ′

Ψ′1 =
q

3ε
(Ψ0 − 2Ψ2)− ε

2q
ψ

Ψ′` =
q

(2`+ 1)ε
[`Ψ`−1 − (`+ 1)Ψ`+1], ` ≥ 2

Ψ rescaled by d ln f0/d ln q and ′ = d/dx , x = kτ

I Truncation at some `max ∼ O(20)

I For z � znr typical ν momentum q ∼ O(Tν)� ε ' a2m2
ν ⇒ higher

multipoles become more and more suppressed e.g. Shoji, Komatsu 1003.0942



Massive neutrino perturbations: linear theory

I Density contrast δ = δρ/ρ̄ ∝
∫
q ε× f0Ψ0

I Divergence of peculiar velocity θ = ∇ · u ∝
∫
q q × f0Ψ1

I Pressure pert. δP ∝
∫
q

q2

ε × f0Ψ0

I Anisotropic stress σ ∝
∫
q

q2

ε × f0Ψ2

I ∫
q (equations for Ψ0 and Ψ1) ⇒

δ̇ = −θ + 3φ̇ (continuity)

θ̇ = −Hθ + k2ψ+k2c2
s δ − k2σ (Euler w pressure+stress)

with sound velocity
c2
s = δP/δρ

and k2ψ = −4πGa2
∑

i δρi (Poisson eq.)

H = ȧ/a, assuming w = P̄/ρ̄� 1



Massive neutrino perturbations: linear theory
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Figure 3. Adiabatic sound velocity c2g, sound velocity c2s and absolute value of the anisotropic stress
divided by the the density contrast, |σ/δ|, as a function of redshift from our numerical computation
and from CLASS using different maximum number of multipoles lmax (note that the difference is
invisible except for |σ/δ| in the left plot). Left: neutrino mass

∑
mν = 0.06 eV and wavenumber

k = 0.1 h/Mpc. Right:
∑
mν = 0.21 eV and k = 0.01 h/Mpc.

In Fig. 3, we compare our numerical results for the sound velocity c2
s and anisotropic

stress over density contrast |σ/δ| with CLASS for two choices of neutrino mass and wavenum-
ber. In addition, the adiabatic sound velocity c2

g is plotted. We see that the sound velocity
is in good agreement with CLASS; a closer quantitative analysis yields agreement of around
1%, also for a larger set of wavenumbers and neutrino masses, and independent of the maxi-
mum number of multipoles lmax used in CLASS. Furthermore, for high neutrino masses and
low wavenumbers, the ratio of anisotropic stress and density contrast also has percent level
agreement with that from CLASS. In the other limit, the CLASS solution develops oscilla-
tory behavior, and only the mean value of the oscillations follows our numerical result. This
is seen for k = 0.1 h/Mpc in the left plot of Fig. 3. For even smaller scales, the oscillations
become more pronounced and results using different multipole truncation number lmax do
not converge to the same answer even at late times. Nonetheless, in this limit |σ/δ| is sup-
pressed compared to the sound velocity, so the impact on the velocity divergence in the Euler
equation is small. In principle, we could have used CLASS to compute the sound velocity
and anisotropic stress entering Eq. (4.15) and in turn entering the two-fluid model, but the
oscillatory behavior on small scales makes this impractical, hence we opt for numerically
solving Eqs. (4.12) and (4.14).

In the following we will use the label 2F for the two-fluid model with the exact effective
sound velocity in Eq. (4.15).

4.2 Comparison with Boltzmann solver

Having set up the two-fluid model for CDM+baryons and massive neutrinos in the previous
subsection, we proceed to compare this scheme at the linear level with a Boltzmann solver
(CLASS). The total matter power spectrum is the weighted sum of the CDM+baryons power
spectrum, the neutrino power spectrum and the cross power spectrum between CDM+baryons
and neutrinos:

Pm,m = (1− fν)2Pcb,cb + 2(1− fν)fνPcb,ν + f2
νPν,ν . (4.16)

– 13 –

MG, Taule 2008.00013

I Adiabatic approximation c2
g (z) ≡ ˙̄P/ ˙̄ρ = 25

3
ζ(5)
ζ(3)

(
Tν(z)
mν

)2

I Full sound velocity c2
s (k , z) = δP/δρ

I Anisotropic stress rel. to density constrast σ/δ



Strategy for going beyond linear theory

I (1) z > zmatch ≡ 25: full Boltzmann hierarchy with `max = 17

(from CLASS)

I (2) z ≤ zmatch ≡ 25: two-fluid description for neutrinos and

CDM/baryons, with effective sound velocity

δ̇cb = −θcb

θ̇cb = −Hθcb + k2ψ

δ̇ν = −θν
θ̇ν = −Hθν + k2ψ+k2 (c2

s − σ/δν)︸ ︷︷ ︸
≡c2

eff

×δν

I We consider two slightly different approximations:

2F-ad Adiabatic approximation c2
eff = c2

g

2F Full linear pressure+shear c2
eff = (c2

s − σ/δν)lin (no
truncation in multipoles)

Blas, MG, Konstandin, Lesgourgues 1408.2995; MG, Taule 2008.00013



Massive neutrino perturbations: linear theory
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Figure 4. Contributions to the linear matter power spectrum at z = 0 in a cosmology with∑
mν = 0.15 eV. The solid black lines correspond to the CLASS solution, the dashed orange lines to

the exact two-fluid solution and the dotted green lines to the two-fluid solution using the adiabatic
approximation.

The various contributions are shown in Fig. 4 at redshift z = 0 and for neutrino mass∑
mν = 0.15 eV, where we include the results from the two-fluid model (both using adiabatic

approximation and exact sound velocity) and from CLASS. The neutrino power spectrum and
the cross power spectrum are suppressed compared to the CDM+baryons power spectrum
due to free-streaming of the neutrinos on scales smaller than the free-streaming scale kFS =
1/c2

s,eff ∼ 10−2 h/Mpc. Since in addition fν � 1, the total matter power spectrum is
dominated by the Pcb,cb term on these scales. However, through the backreaction on the
gravitational potential, the presence of massive, free-streaming neutrinos leads to a reduction
of growth in the baryon and CDM sector, which at the linear level yields the well known
∼ 8fν reduction of the total power spectrum. Therefore it is necessary to calculate the
neutrino transfer function accurately even when neglecting the last terms of Eq. (4.16).

Fig. 5 displays the relative difference between the two-fluid model and the CLASS solu-
tion for the neutrino masses we consider (left: adiabatic approximation, right: exact sound
velocity). We see that the two-fluid model with adiabatic approximation underestimates the
neutrino-neutrino and cross power spectra by a significant amount (this is also evident from
Fig. 4). The decrease in power is caused by the adiabatic approximation overestimating the
sound velocity, as is apparent from Fig. 3, leading to suppressed growth on scales smaller
than the free-streaming scale. On scales close to and smaller than the free-streaming scale
kFS, the Poisson term begins to dominate in the neutrino Euler equation, so the performance
of the adiabatic model improves. We note that the adiabatic approximation works better for
increasing neutrino masses, where a larger fraction of the neutrino distribution has become
sufficiently non-relativistic, and the sound velocity is further in approaching the adiabatic
limit. On the other hand, when fν is larger the error in the neutrino sector affects the total
matter power spectrum to greater extent: the gravitational coupling between CDM+baryons
and neutrinos is larger and the last two terms in Eq. (4.16) are more important. Neverthe-
less, for the total power spectrum and the neutrino masses we consider, we find agreement

– 14 –

Pmm = (1− fν)2Pcb,cb + 2(1− fν)fνPcb,ν + f 2
ν Pνν

Free-streaming scale k2
FS = 3ΩmH2/2c2

eff
∑

mν = 0.21eV MG, Taule 2008.00013



Massive neutrino perturbations: linear theory
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Figure 5. Relative difference between the linear power spectrum computed in the two-fluid model
and the Boltzmann solution, ∆P = |PTwo−fluid/PBoltzmann− 1|, for various neutrino masses at z = 0.
The solid lines correspond to the total matter power spectrum ∆Pm,m, the dashed lines correspond
to the CDM+baryons power spectrum ∆Pcb,cb and the dotted lines correspond to the neutrino power
spectrum ∆Pν,ν . Left: Two-fluid model using the adiabatic sound velocity approximation (scheme
2F-ad). Right: Two-fluid model using exact sound velocity and anisotropic stress (scheme 2F).

between the adiabatic model and the CLASS solution of a few permille.
As expected, the two-fluid model with exact effective sound velocity agrees excellently

with the Boltzmann solution, with deviations of the order of 10−4–10−3 depending on the
neutrino mass, as seen in the right plot of Fig. 5. The neutrino power spectrum agrees with
the Boltzmann solution from CLASS at percent level or better for k ∼ 0.1 h/Mpc, and at
the few percent level for k & 1 h/Mpc. However in the latter region the Boltzmann solution
from CLASS also differs by a few percent depending on the maximum number of multipoles
lmax included in the Boltzmann hierarchy, indicating that inaccuracies due to the truncation
of the hierarchy propagate to lower multipoles.

Finally, we comment on a few alternative approximations for neutrinos that truncate the
Boltzmann hierarchy at lmax = 2, and hence include an evolution equation for the anisotropic
stress in the fluid equations. Various trunction schemes have been used for Ψ3 to close
the system: the simplest one is Ψ3 = 0 [53], but this is rather inaccurate and the errors
propagate to lower multipoles. An improved version is to use the spherical Bessel function
recurrence relation [55], and a similar scheme is used by the default neutrino treatment in
CLASS [56]. Nevertheless, the neutrino power spectrum is reduced by a factor O(10%)
around k = 0.1 h/Mpc using this truncation scheme, compared to using the full Boltzmann
hierarchy. It was noted in Ref. [57] that due to the gravitational source terms, the Bessel
relation poorly captures the behavior of Ψ3, and using instead an empirical formula yields
percent agreement for the neutrino power spectrum. Our two-fluid model goes even further
in that it captures the effect of all higher order cumulants effectively through the sound
velocity and anisotropic stress in the Euler equation. In this sense, the agreement with
the full Boltzmann hierarchy is largely a consistency check: the only difference between the
Boltzmann equations and the 2F scheme is the neglection of the neutrino equation of state
in the latter.

We conclude that the two-fluid model with neutrino sound velocity and anisotropic
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Non-linear equations

δ̇cb + θcb = −
∫

ki

αθcbδcb

θ̇cb +Hθcb − k2ψ = −
∫

ki

βθcbθcb

δ̇ν + θν = −
∫

ki

αθνδν

θ̇ν +Hθν − k2ψ − k2c2
effδν = −

∫

ki

βθνθν

I c2
eff(k, z) takes complete impact of linear pressure+anisotropic stress

on propagation of all non-linear modes into account (2F scheme)

I Neglect non-linearities in Ψ`, ` ≥ 2 (check: impact of stress on
P≥1−loop
mm strongly suppressed for z ∼ O(1)� znr)

cf. e.g. Chen, Uphadhye, Wong 2011.12503; Dupuy, Bernardeau 1503.05707; Führer, Wong 1412.2764 for

alt. approaches, see also Wong 0809.0693 for prev. work

Notation
∫
ki
αθcbδcb =

∫
d3k1d

3k2δ
(3)(k− k1 − k2)α(k1, k2)θcb(k1)δcb(k2) α(k1, k2) =

k·k1
k2

1

, β =
k2 k1·k2

2k2
1
k2

2



Non-linear equations

I Vector notation

ψa ≡ (δcb,−θcb/Hf , δν ,−θν/Hf )

I Rescaled time variable η ≡ lnD,

D = linear growth rate, f = d lnD/d ln a

I Non-linear eq. of motion takes the form

∂ηψa + Ωab(k , η)ψb =

∫

ki

γabcψb(k1, η)ψc(k2, η)

where

Ω(k, η) =


0 −1 0 0

− 3
2

Ωm
f 2 (1− fν ) 3

2
Ωm
f 2 − 1 − 3

2
Ωm
f 2 fν 0

0 0 0 −1

− 3
2

Ωm
f 2 (1− fν ) 0 − 3

2
Ωm
f 2 [fν − k2c2

eff(k, η)] 3
2

Ωm
f 2 − 1



depends on scale and time, and γ121 = α, γ222 = β, γabc = 0 else



Non-linear equations

Perturbative expansion in terms of initial (linear) density contrast δ0

ψa(k, η) =
∞∑

n=1

∫

q1,...,qn

δ(3)(k−q1···n)F (n)
a (q1, . . . ,qn; η) δini (q1) · · · δini (qn)

Equation of motion for the non-linear kernels F
(n)
a

∂ηF
(n)
a (q1, . . . ,qn; η) + Ωab(k , η)F

(n)
b (q1, . . . ,qn; η)

=
n−1∑

m=1

γabc(k,q1···m,qm+1···n)F
(m)
b (q1, . . . ,qm; η)F (n−m)

c (qm+1, . . . ,qn; η)

We solve this ODE numerically in a recursive way for all kernels required

for the cb and ν power spectra



Non-linear equations

Power spectrum computed with numerically evolved kernels F
(n)
a

Pab(k , z) =

Plin︷ ︸︸ ︷
P11,ab(k) +

P1−loop (NLO)︷ ︸︸ ︷
(2P13 + P22)ab

+ (2P15 + 2P24 + P33)ab︸ ︷︷ ︸
P2−loop (NNLO)

+ . . .

where Pnm,ab = 〈ψ(n)
a ψ

(m)
b 〉

e.g. P22,cbcb[Pini ] = 2
∫
q
d3q F

(2)
cb (q, k− q; z)2 Pini (q)Pini (|k− q|)
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Figure 6. Contributions to the matter power spectrum at z = 0 computed in the 2F scheme for
neutrino mass

∑
mν = 0.15 eV. Solid lines correspond to the linear contribution, while dashed and

dotted lines correspond to the absolute value of the 1- and 2-loop corrections, respectively. Error bars
(only visible in a few places) indicate uncertainty from the numerical integration.

kernels have decayed by ηmatch. Thus, the entire kernel hierarchy resides in the growing mode
of Ω(k, ηmatch) when we turn on dynamics for η > ηmatch. Note that a similar strategy was
used in the 1-loop analysis of [33] to avoid transients that occur within the TRG framework
[45].

The numerical analysis is based on a ΛCDM cosmology with massive neutrinos and
otherwise the same parameters as in Sec. 3: h = 0.6756, Ωb = 0.04828, Ωcdm = 0.2638,
ns = 0.9619 and As = 2.215 · 10−9. We take the input linear CDM+baryons power spectrum
at zmatch = 25 and the ratio Ωm/f

2 from CLASS. Fig. 6 shows the various contributions
to the matter power spectrum at 2-loop with neutrino mass

∑
mν = 0.15 eV, computed

in the two-fluid model with exact sound velocity (scheme 2F). As one would expect, the
neutrino-neutrino and CDM+baryons-neutrino cross correlation loop corrections are sup-
pressed compared to the corresponding CDM+baryons auto-correlation loop corrections. In
addition, the suppression is also present to a certain degree at scales larger than the free-
streaming scale, due to mode-mode coupling. Moreover, since they are multiplied by fν � 1
(cf. Eq. (4.16)), loop corrections to Pcb,ν and Pν,ν can safely be neglected for an analysis with
percent-level accuracy. Nevertheless, we include them for completeness in our analysis.

5.1 Approximation schemes

We aim to identify viable simplified approximation schemes to capture the impact of massive
neutrinos on loop corrections within the weakly non-linear regime. We therefore compare
the following schemes, in the order of increasing complexity:
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Massive neutrino perturbations: non-linear theory

Comparison to Standard Pert. Theory (SPT):

I (i) SPT treats all matter as cold and pressureless

δSPT = fcdmδcdm + fbδb + fνδν

I (ii) Is based on a single fluid component ψSPT = (δSPT,−θSPT/Hf )

I (iii) Uses the so-called EdS approximation for the non-linear kernels

Ω1-fluid =

(
0 −1

− 3
2

Ωm

f 2
3
2

Ωm

f 2 − 1

)
7→ ΩEdS =

(
0 −1
− 3

2
1
2

)



Massive neutrino perturbations: non-linear theory

I The EdS approx. implies that the time- and scale-dependence
factorizes

F
(n)
δSPT

= D(z)n × Fn(k1, . . . , kn)

F
(n)
θSPT

= D(z)n × Gn(k1, . . . , kn)

such that the eq. of motion can be solved by an algebraic recursion
relation.

I Here we use instead a coupled system for two fluid components (2F)

δcb =
fcdmδcdm + fbδb

fcdm + fb
, δν

and solve ODEs for the appropriate kernels

F (n)
a (k1, . . . , kn, z), a = δcb, θcb, δν , θν

including the ki− and z-dependent growth suppression due to ν
free-streaming with a 4× 4 matrix Ωab(k, z) that propagates all
non-linear modes



Massive neutrino perturbations: non-linear theory

Comparison to common approaches:

1F : “Naive” scheme using linear input power incl. neutrinos,
but non-linear kernels from EdS-SPT

Pmm = P lin
mm + PEdS-SPT

1+2−loop[P lin
mm]



Massive neutrino perturbations: non-linear theory

10−2 10−1 100 101

k [h/Mpc]

0.85

0.90

0.95

1.00

1.05

1.10

1.15

P
1
F

1
−

lo
o
p
/
P

2
F

1
−

lo
o
p

∑
mν = 0.06 eV∑
mν = 0.15 eV∑
mν = 0.21 eV∑
mν = 0.30 eV

10−2 10−1 100 101

k [h/Mpc]

0.85

0.90

0.95

1.00

1.05

1.10

1.15

P
1
F

2
−

lo
o
p
/
P

2
F

2
−

lo
o
p

∑
mν = 0.06 eV∑
mν = 0.15 eV∑
mν = 0.21 eV∑
mν = 0.30 eV

1F, z = 0

Figure 9. Non-linear corrections to the power spectrum for various neutrino masses at z = 0
computed in the 1F scheme, normalized to the 2F result. Left: 1-loop correction. Right: 2-loop
correction. Shaded regions indicate uncertainty from numerical integration. At k ' 0.08 h/Mpc
and k ' 0.5 h/Mpc the 1- and 2-loop corrections cross zero, respectively, leading to large relative
deviations.
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Figure 10. Same as Fig. 9 with the 1F-cb scheme normalized to 2F.

In summary, we find that the external source scheme 1F-ext best emulates the results of
the 2F scheme. Of the simplest schemes 1F and 1F-cb, 1F-cb yields the best results for the
separate loop corrections, with the main source of error coming from the EdS approximation.
Even though the 1F scheme appears to perform better when the linear and non-linear con-
tributions are added, this is due to a cancellation of errors, which is regarded as coincidental
and moreover not expected to necessarily occur when e.g. including redshift space distortion
effects or effective field theory corrections.

6 Conclusions

In this work, we have set up a framework that captures the effect of time- and scale dependent
growth on non-linear corrections to the power spectrum. This is achieved by extending
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Ratio of loop corr. to Pmm(k) compared to full 2F scheme at z = 0
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Massive neutrino perturbations: non-linear theory

Comparison to common approaches:

1F-cb : Non-linear kernels from EdS-SPT, but use only cb power
as linear input for loops Saito et al 0801.0607., Castorina et al 1505.07148

Pmm = P lin
mm + (1− fν)2PEdS-SPT

1+2−loop[P lin
cb,cb]
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In summary, we find that the external source scheme 1F-ext best emulates the results of
the 2F scheme. Of the simplest schemes 1F and 1F-cb, 1F-cb yields the best results for the
separate loop corrections, with the main source of error coming from the EdS approximation.
Even though the 1F scheme appears to perform better when the linear and non-linear con-
tributions are added, this is due to a cancellation of errors, which is regarded as coincidental
and moreover not expected to necessarily occur when e.g. including redshift space distortion
effects or effective field theory corrections.

6 Conclusions

In this work, we have set up a framework that captures the effect of time- and scale dependent
growth on non-linear corrections to the power spectrum. This is achieved by extending
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Massive neutrino perturbations: non-linear theory

1F-ext : Numerical kernels solved via ODE for an eff. single cb
fluid system with Lesgourgues, Matarrese, Pietroni, Riotto 0901.4550

Ω1F-ext(k , η) =

(
0 −1

− 3
2

Ωm

f 2 ξ(k , η) 3
2

Ωm

f 2 − 1

)

where ξ(k, η) = 1− fν + fν
(
δν(k,η)
δcb(k,η)

)
lin.
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Figure 7. Fractional difference between different schemes and the 2F scheme of the total matter power
spectrum Pm,m at redshift z = 0 and with

∑
mν = 0.06, 0.15, 0.21, 0.3 eV. Dashed lines correspond

to the 1-loop power spectrum P = P lin. + P 1-loop, while solid lines correspond to the 2-loop power
spectrum P = P lin. + P 1-loop + P 2-loop. The shaded areas indicate the numerical uncertainties of the
2-loop results (numerical uncertainty at 1-loop is invisible).

suppression in the 1F scheme. This is seen in Fig. 10, which displays the separate 1- and
2-loop corrections to the power spectrum in the 1F-cb scheme, normalized to the 2F scheme.
Given our knowledge of the deviation in the non-linear corrections due to the departure from
EdS from Sec. 3 and comparing to Fig. 1 in particular, we conclude that the main difference
between the 1F-cb and 2F results comes from the EdS approximation in 1F-cb. The deviation
due to the neglection of the neutrino-neutrino and CDM+baryons-neutrino power spectra is
only about 0.1%. Note that the 1F-cb scheme appears to perform worse than the 1F scheme
in Figs. 7 and 8, however this is only due to the accidental cancellation between inaccuracies
of the 1- and 2-loop terms in the 1F scheme.

External source scheme (1F-ext) With a more proper treatment of the time- and scale-
dependence of the dynamics, the external source scheme yields results that are unwaveringly

– 20 –

Ratio of Pmm(k) compared to full 2F scheme at z = 0

(dashed=NLO(1-loop),solid=NNLO(2-loop)) MG, Taule 2008.00013
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Figure 7. Fractional difference between different schemes and the 2F scheme of the total matter power
spectrum Pm,m at redshift z = 0 and with

∑
mν = 0.06, 0.15, 0.21, 0.3 eV. Dashed lines correspond

to the 1-loop power spectrum P = P lin. + P 1-loop, while solid lines correspond to the 2-loop power
spectrum P = P lin. + P 1-loop + P 2-loop. The shaded areas indicate the numerical uncertainties of the
2-loop results (numerical uncertainty at 1-loop is invisible).

suppression in the 1F scheme. This is seen in Fig. 10, which displays the separate 1- and
2-loop corrections to the power spectrum in the 1F-cb scheme, normalized to the 2F scheme.
Given our knowledge of the deviation in the non-linear corrections due to the departure from
EdS from Sec. 3 and comparing to Fig. 1 in particular, we conclude that the main difference
between the 1F-cb and 2F results comes from the EdS approximation in 1F-cb. The deviation
due to the neglection of the neutrino-neutrino and CDM+baryons-neutrino power spectra is
only about 0.1%. Note that the 1F-cb scheme appears to perform worse than the 1F scheme
in Figs. 7 and 8, however this is only due to the accidental cancellation between inaccuracies
of the 1- and 2-loop terms in the 1F scheme.

External source scheme (1F-ext) With a more proper treatment of the time- and scale-
dependence of the dynamics, the external source scheme yields results that are unwaveringly
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spectrum P = P lin. + P 1-loop + P 2-loop. The shaded areas indicate the numerical uncertainties of the
2-loop results (numerical uncertainty at 1-loop is invisible).

suppression in the 1F scheme. This is seen in Fig. 10, which displays the separate 1- and
2-loop corrections to the power spectrum in the 1F-cb scheme, normalized to the 2F scheme.
Given our knowledge of the deviation in the non-linear corrections due to the departure from
EdS from Sec. 3 and comparing to Fig. 1 in particular, we conclude that the main difference
between the 1F-cb and 2F results comes from the EdS approximation in 1F-cb. The deviation
due to the neglection of the neutrino-neutrino and CDM+baryons-neutrino power spectra is
only about 0.1%. Note that the 1F-cb scheme appears to perform worse than the 1F scheme
in Figs. 7 and 8, however this is only due to the accidental cancellation between inaccuracies
of the 1- and 2-loop terms in the 1F scheme.

External source scheme (1F-ext) With a more proper treatment of the time- and scale-
dependence of the dynamics, the external source scheme yields results that are unwaveringly
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Lyman α forest
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Figure 18: 1D Lyα forest power spectrum for the analysis described in this paper. Error bars in-
clude statistics and systematics added in quadrature. The solid curves show the best-fit model when
considering Lyα data alone. The oscillations arise from Lyα-Si III correlations, which occur at a
wavelength separation ∆λ = 9.2 Å.

Table 6: Best-fit value and 68% confidence levels of the cosmological parameters of the model fitted
to the flux power spectrum. The dataset is split in several subsamples based on the spectral resolu-
tion, the SNR per pixel, the QSO catalog (DR9, post DR9), the spectrograph used and the Galactic
hemisphere (NGC, SGC).

Parameter Reference σλ < 80 km s−1 SNR > 4 MJD < 55753 MJD > 55573
T0 (z=3) (103K) 10.3 ± 1.9 12.0 ± 2.0 11.7 ± 1.9 8.6 ± 2.4 11.4 ± 1.9
γ 0.8 ± 0.1 0.8 ± 0.1 0.9 ± 0.1 0.9 ± 0.1 0.8 ± 0.1
σ8 0.820 ± 0.021 0.826 ± 0.022 0.833 ± 0.020 0.850 ± 0.029 0.819 ± 0.021
ns 0.955 ± 0.005 0.957 ± 0.006 0.951 ± 0.008 0.945 ± 0.007 0.954 ± 0.006
Ωm 0.269 ± 0.009 0.270 ± 0.010 0.276 ± 0.012 0.280 ± 0.013. 0.271 ± 0.011
H0 (km s−1 Mpc−1) 67.1 ± 1.0 67.0 ± 1.0 67.2 ± 1.0 67.3 ± 1.0 67.0 ± 1.0

Spectro #1 Spectro #2 SGC NGC
T0 (z=3) (103K) 10.3 ± 1.9 11.2 ± 2.1 11.3 ± 3.1 10.2 ± 1.9
γ 0.9 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.1
σ8 0.826 ± 0.023 0.834 ± 0.023 0.794 ± 0.029 0.825 ± 0.02
ns 0.963 ± 0.006 0.939 ± 0.007 0.960 ± 0.011 0.956 ± 0.005
Ωm 0.262 ± 0.010 0.286 ± 0.014 0.263 ± 0.013. 0.271 ± 0.010
H0 (km s−1 Mpc−1) 66.9 ± 1.0 67.3 ± 1.0 67.2 ± 1.0 67.1 ± 1.0

– 27 –
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Lyman α forest and massive neutrinos
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Figure 1: Matter power spectrum for massive neutrinos for
∑
mν = 0, 0.15, 0.3, 0.6 eV and

z = 3 normalized to the ΛCDM spectrum. Dashed lines show the linear power spectrum and

solid lines the 1-loop results for Pθθ (blue), Pδθ (red) and Pδδ (orange), respectively. The gray

shaded region indicates the scales of BOSS observations.

is the growth factor appropriate for matter domination and k � kfs.

Due to the almost scale-independent suppression of the linear power spectrum on scales

relevant for Lyman-α observations, it is possible to approximately “cancel” the suppression by

increasing the normalization of the primordial power spectrum, described by the parameter

As within ΛCDM. It has been stressed in [5] that this leads to a degeneracy between the

sum of neutrino masses
∑
mν and As. In this work we fix the value of As when comparing

models with different neutrino masses, motivated by the strong constraints on this parameter

from Planck [3], thereby breaking the degeneracy. Nevertheless, as we will see, a similar

degeneracy occurs when using the most conservative realization of the effective model for the

1D Lyman-α power spectrum with a completely free amplitude A in (9). After validating the

baseline model for the Lyman-α power spectrum, we will therefore discuss to which extent

the parameter A can be restricted by comparing to hydrodynamical simulations.

3 Validation with simulation data

3.1 Fit of the effective model to simulation data

In order to validate our effective model for the one-dimensional Lyman-α flux power spectrum,

we compare to hydrodynamical simulation data [8]. The simulations are based on a ΛCDM

cosmology with h = 0.678, Ωb = 0.0482, ΩCDM = 0.260, ns = 0.961, As = 2.12 · 10−9,

τ = 0.0952, and varying values for the sum of neutrino masses
∑
mν = 0, 0.15, 0.3, 0.6, 0.9 eV.

Note that we keep the baryon and cold dark matter density parameters fixed for all cases, for

9

MG, Konstandin, Sagunski, Tulin 1805.12203, Pedersen , Font-Ribera , Kitching , McDonald , Bird 1911.09596,

MG, Konstandin, Sagunski, Viel 2011.03050, cf also Hannestad, Wong 2006.04995



Application of effective model to 1D BOSS DR14 Lyα
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Figure 6: 1D Lyman-α flux power spectrum from BOSS [2] (data points) and best-fit ΛCDM

analytical model (lines). Solid lines correspond to 1-loop input power spectra, and dashed

lines to the linear approximation.

while marginalizing over IGM parameters. Therefore, as for the comparison to simulation

data, we have fixed all cosmological parameters, except for the neutrino mass, as given in

the beginning of section 3. This restriction should be kept in mind when interpreting the

numerical value of the neutrino mass bounds quoted below.

4.1 Fit of the effective model to BOSS data

In figure 6, we show the best-fit ΛCDM model together with the BOSS data [2]. We observe

that the analytical model with 1-loop input power spectra yields a valid description of the 1D

flux power spectrum, with a total χ2 = 193.4. This can be compared to the number of degrees

of freedom, given by 35 k-bins ×7 redshifts, and subtracting six free model parameters, giving

239. As expected, the total χ2 value is significantly larger as for the simulation data. For

comparison, also the result when using linear instead of 1-loop input spectra is shown with

dashed lines in figure 6. We find a larger value (χ2 = 206.5) when using linear instead of 1-

loop input power spectra. Thus, including non-linear corrections in the input power spectrum

improves the fit, similarly as observed for the simulation data.

In figure 7, we show the best-fit analytical model for the cases of
∑
mν = 0, 0.6 eV when

using a 1-loop input power spectrum and a fixed amplitude. From there we can already see

that for large wavenumbers the ΛCDM model yields a better fit to the BOSS data than the

one with
∑
mν = 0.6 eV. Indeed, we find a total value of χ2 = 193.4 in the former and

χ2 = 230.2 in the latter case. (Note that for ΛCDM the case with fixed and free amplitude

coincide). In contrast to this, when using linear input power spectra, we obtain a value

χ2 = 207.8 for
∑
mν = 0.6 eV that is very similar to the one for ΛCDM, χ2 = 206.5.

16

I Perturbative input: 1/2-loop Pδδ,Pδθ,Pθθ

I 6 EFT parameters (δ, θ bias(z), thermal broadening, baryon Jeans
scale following Gnedin/Hui astro-ph/9706219, +UV counterterm)
varied in fit to BOSS DR14 1Dlyα data 1812.03554 for z = 3− 4.2
w/o prior

I ΛCDM χ2/dof∼ 231/210, obtained for reasonable best-fit values

MG, Konstandin, Sagunski, Tulin 1805.12203, MG, Konstandin, Sagunski, Viel 2011.03050



Validation with hydro sim
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Figure 2: 1D Lyman-α flux power spectrum from hydrodynamical simulations (data points)

and best fit analytical model when using 1-loop power spectra (solid lines) or the linear power

spectrum (dashed lines) as input, for
∑
mν = 0, 0.15, 0.3, 0.6 eV.

our results). While, as expected, the value of I0 does depend on the cutoff, this dependence

is absorbed in a shift of the model parameters for the flux power spectrum, in particular the

counterterm parameter αc.t.. Furthermore, our results are stable against variations of the

parameters ks and kF ; we will come back to this point in section 4. We conclude that the

dominant impact of the complex physics of the intergalactic medium can be accounted for by

the free parameters of the analytical model.

3.2 Discrimination of ΛCDM vs massive neutrinos

In order to investigate in how far the analytical model for the Lyman-α flux power spectrum

can be used to set constraints on the sum of neutrino masses, we fit the hydrodynamical sim-

ulation data for a set of cosmological models with varying “input” neutrino mass, that does

not necessarily match the “true” value of
∑
mν of the simulation. The resulting χ2 values

are shown in figure 3 as a function of the “input” mass, and for the four simulations corre-

sponding to a “true” neutrino mass
∑
mν = 0, 0.15, 0.3, 0.6 eV, respectively. As mentioned

before, the absolute value of χ2 should be regarded with care when fitting to simulation data.

Nevertheless, we take the relative differences as an indicator of the sensitivity to the neutrino

mass (we find comparable differences in χ2 for the BOSS data, see below). When using the

11

Validation with hydro sim MG, Konstandin, Sagunski, Viel 2011.03050



Validation with hydro sim (ν mass estimation)
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Figure 5: Inferred 95% C.L. interval for
∑
mν when fitting to simulation data with “true”

neutrino mass given on the x-axis. The blue shaded region corresponds to the case where all

parameters are left free. The red region is obtained for fixed amplitude, according to (20),

and the orange region when assuming in addition a 50% prior on αbias. Note that the orange

and red regions almost overlap. For the case of free bias, a second solution is obtained for

large neutrino masses (red region with dashed lines).

using 1-loop power spectra (red solid lines), the χ2 function features a pronounced minimum

at the “true” neutrino mass for all simulations. The observation that the value of χ2 at this

minimum lies on top of the blue line corresponds to the finding discussed in the previous

paragraph. In addition, the red lines feature a second minimum at a significantly higher

neutrino mass. This feature can be attributed to a parameter degeneracy between the bias

and counterterm parameters. Nevertheless, the value of χ2 at the second minimum is larger

than for the minimum at the “true” value. We find that, in practice, this feature does not

impact the constraint on the sum of neutrino masses for realistic values of its “true” value (see

below). Nevertheless, we point out that the degeneracy can be broken by imposing in addition

a weak prior on the bias parameter. In particular, if we require that the bias parameter αbias

lies within ±50% of the best-fit value for the ΛCDM model (that is, using the bias obtained

for vanishing neutrino mass in both the “input” and “true” value as reference value). The

corresponding χ2 values with prior on the bias are shown by the orange solid lines in figure 3.

While the (spurious) second minimum is lifted, we observe that the χ2 values around the

minimum at the “true” neutrino mass are robust. Finally, we remark that when using the

linear power spectrum instead of 1-loop, there is no sensitivity to the neutrino mass even when

fixing the amplitude according to (20) (red dashed lines) and imposing a prior on the bias

(orange dashed lines). As expected, the additional scale-dependence of the power spectrum

due to non-linear corrections is crucial for being able to constrain the neutrino mass.

14
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BOSS 2018 Lyα data: results
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Figure 8: χ2 obtained from a fit of the analytical model to BOSS data [2]. Blue lines

correspond to the baseline analytical model with free amplitude, while A is fixed according

to (20) for the red lines. Solid lines correspond to 1-loop, and dashed to linear input power

spectra.

well as a suite of hydrodynamical simulations in order to predict the flux power spectrum.

When combining Lyman-α with CMB temperature and polarisation data from Planck [3],

the 95% C.L. bound lies in the range 0.10− 0.13 eV. While [4] finds a slight tension between

Planck and BOSS Lyman-α data (that can be improved when including a running spectral

index in the cosmological model), there is overall a good agreement. In our analysis, the

Planck results enter indirectly via the fixed set of cosmological parameters, in particular the

normalization of the primordial power spectrum As. We leave an analysis with a combined

fit of IGM and cosmological parameters to future work. Given that the analytical model

allows for a considerable freedom regarding the impact of the IGM, the upper bound can be

considered as conservative. Nevertheless, some input from simulations is required to calibrate

the parameter c entering the relation (20) for the amplitude A. Further work is required to

determine the sensitivity of this relation to changes in the cosmological parameters.

When using Lyman-α data only, together with a prior H0 = 67.3 ± 1.0 km/s/Mpc, the

upper bound at 95% C.L. is found to be ' 0.58 − 0.71 eV in [4]. The main reasons for

the large improvement when combining with CMB data is that the approximate degeneracy

between As and
∑
mν is broken. Within the analytical model considered here, a similar

degeneracy between the amplitude parameter A and the neutrino mass occurs. Accordingly,

when leaving the amplitude A free, the bound weakens significantly, to
∑
mν ≤ 1.24 eV.

Note that the Lyman-α model parameter A describes the overall normalization of the non-

linear 1D flux power spectrum, while As corresponds to the usual ΛCDM parameter related

to the normalization of the linear 3D matter power spectrum. Therefore, they are distinct

parameters, and, depending on the properties of the IGM, A can vary even when As is fixed.

18

∑
mν ≤

{
0.16 eV 95%C.L. A fixed (Planck18)
1.24 eV 95%C.L. A free

MG, Konstandin, Sagunski, Viel 2011.03050

(compare to result from grid of hydro-sim incl. lower z from 1911.09073:

0.10eV w P18, 0.71eV w/o Planck)



BOSS 2018 Lyα data: discussion
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Figure 11: Dependence of ∆χ2 on the parameters ks and kF obtained from a fit of the

analytical model with fixed amplitude and 1-loop input spectrum to BOSS data [2]. The

shaded regions show the maximal and minimal ∆χ2 values when varying kF = 14−22h/Mpc,

for given values of ks (see legend). The ∆χ2 for the baseline model with kF = 0.11 km/s

and kF = 18 h/Mpc is also shown for comparison. The vertical lines indicate the lowest and

highest value of the 95% C.L. bound on
∑
mν obtained for any set (kF , ks) within the ranges

indicated in the figure, respectively, as well as the bound obtained for the baseline model.

known IGM physics is mainly accounted for by the bias and counterterm parameters, that

are marginalized over in all cases. The impact of the choice of ks and kF on the 1D flux power

spectrum on BOSS scales is only minor. For our fiducial analysis, these parameters were

therefore fixed to kF = 18h/Mpc and ks = 0.11(km/s)−1, respectively. In figure 11, we show

the envelope of the χ2 curves obtained when varying kF in the range 14−22h/Mpc, for various

values of ks within 0.08− 0.14(km/s)−1. The corresponding neutrino mass bound, extracted

for a grid of fixed values of ks and kF , chosen within the ranges given above, is always close

to the fiducial value 0.16 eV, with the smallest and largest values being 0.144 and 0.167 eV,

respectively. Alternatively, when marginalizing over ks and kF within the same ranges (i.e.

treating these parameters as free values in the fit, and minimizing χ2), the resulting mass

bound is found to be 0.15 eV. We conclude that the sensitivity to the model parameters ks
and kF is minor.

As for the simulation data, we also checked that our results are robust when varying

the cutoff that is imposed in the computation of the integrals I0,2,4 entering the 1D power

spectrum, see (10). When varying the cutoff in the range 10 − 20h/Mpc, the neutrino mass

bound changes within 0.153 − 0.159 eV. This check indicates that the counterterm and bias

parameters are indeed suitable to absorb the unknown UV contributions to the 1D flux power

spectrum. We also verified that, within the scope of our analysis, we obtain stable results when

computing χ2 by summing over all k-bins individually, or taking the full covariance matrices

21

Jeans scale kF and thermal broadening ks (note that velocity bias and
counterterms are marginalized over in all cases)

MG, Konstandin, Sagunski, Viel 2011.03050



BOSS 2018 Lyα data: discussion

Sensitivity to density bias + Planck prior related to overall amplitude A
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Figure 10: 95% C.L. upper bound on
∑
mν when allowing for a tolerance in the amplitude,

|A−Afix| ≤ δA, where Afix is given by (20). The limit δA/A→ 0 corresponds to the baseline

model with fixed amplitude, and the opposite limit to the case where A is left completely

free.

latter occurs for
∑
mν = 0.028(0.55) eV with χ2 = 193.28(191.96) for fixed (free) amplitude,

but is well compatible with both massless neutrinos (i.e. ΛCDM, χ2 = 193.39(193.39)) as

well as 0.05 eV (χ2 = 193.36(193.13)) at 1σ.

4.3 Robustness and dependence on assumptions

We now turn to the discussion of the impact of various assumptions on the neutrino mass

bound. The most relevant is the relation (20) for the dependence of the overall amplitude A

on the neutrino mass, that was calibrated from hydrodynamical simulation data. So far we

have either assumed that A is completely free, or entirely fixed according to (20). In order to

quantify by how much the neutrino mass bound relaxes when allowing for some freedom in

the amplitude A, we have considered an intermediate scenario, where we allow for a relative

variation of δA/A above or below the fiducial value (20). The dependence of the upper bound

on δA/A is shown in figure 10. For δA/A → 0 one recovers the case with fixed amplitude,

while for the largest value δA/A = 26% shown in figure 10, the upper bound is already close

to that with completely free amplitude. For δA/A = 5% the upper bound degrades from

0.16 eV to 0.35 eV. Therefore, an accurate control over the overall amplitude of the 1D flux

power spectrum (relative to the total flux) is crucial for the robustness of the neutrino mass

bound. We checked that, when using ΛCDM simulation results instead of BOSS data, we

obtain a dependence comparable to the one in figure 10.

Finally, we quantify in how far the parameters ks and kF , related to thermal broadening

as well as the Jeans scale due to baryonic pressure, respectively, influence the neutrino mass

bound. We stress that, within the analytical model considered here, the impact of the un-

20

δA/A .





0.1 1.1 · 104K ≤ T (z = 3) ≤ 2.3 · 104K (IGM temp.)
0.025 1.0 ≤ γ ≤ 1.6 (IGM adiabat. index)
0.002 5.4 ≤ zr ≤ 7.4 (reionization)

MG, Konstandin, Sagunski, Viel 2011.03050



Prospects

Estimate of sensitivity of a DESI-like survey (∼ 700, 000 quasar spectra
at higher resolution, Walther et al 2012.04008) with . 1% rel. error for
the same k and z range as BOSS, and fixed A

I Mass determination for true value Mν ≡
∑

mν ≥ 0.15eV

∆Mν

Mν
' 17%− 23% @ 95%C.L.

I Upper bound assuming hypothetical “true” value Mν = 0

Mν ≡
∑

mν ≤ 0.056eV @ 95%C.L.

MG, Konstandin, Sagunski, Viel 2011.03050

Note: further improvements by comb. with other datasets possible;

numbers assume marginalization over velocity bias and counterterms,

with fixed amplitude (Planck18)



Conclusion

I Precision comparison of non-linear corrections to the power
spectrum in presence of massive neutrinos

taking the impact of linear neutrino shear and pressure on the propagation of non-linear modes into

account in a hybrid Boltzmann/two-fluid model with numerically evolved non-linear kernels

⇒ We find 1-2% difference compared to conventional, simplified
approaches at z = 0

⇒ First time this difference has been assessed at NNLO; above
nominal projected accuracy of future galaxy surveys



Conclusion

I EFT approach to BOSS (low-res) Lyman-α forest observations

taking advantage of scale separation between BOSS observations and non-linear as well as IGM scales at

relevant redshifts

⇒ more efficient evaluation of likelihood

does not require to run hydro sim for each point in parameter space

⇒ marginalization over IGM parameters (velocity bias,...)

⇒ can be easily adapted to non-standard DM models

e.g. strongly self-interacting “cannibal” DM, MG, Konstandin, Sagunski, Tulin 2018

thank you
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EdS vs exact time dep. for ΛCDM with mν = 0
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Figure 1. Non-linear corrections to the matter power spectrum with exact time-dependence, normal-
ized to the corresponding terms in the EdS approximation. Left: 1-loop correction and right: 2-loop
correction. The blue curves correspond to z = 0 while the green ones correspond to z = 0.5. The error
bars display the uncertainty from the numerical integration. Note that the spikes at k ' 0.08 h/Mpc
(1-loop) and k ' 0.5 h/Mpc (2-loop) are due to the non-linear corrections crossing zero, leading to
large relative deviations.
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Figure 2. Total matter power spectrum at 1- and 2-loop with exact time-dependence normalized
to that in the EdS approximation. Left: Redshift z = 0. right: z = 0.5. The uncertainty from the
numerical integration is indicated with error bars.

We compute the 1- and 2-loop corrections to the power spectrum both in the EdS
approximation and with the exact time dependence and compare the results. In Fig. 1, this
comparison is shown for each loop correction separately and at redshifts z = 0 and z = 0.5,
respectively. At z = 0.5 the EdS approximation works better, since the exact solution only
very recently starts to deviate from the EdS one. At k ' 0.08 h/Mpc, the 1-loop correction
switches sign and crosses zero, which yield large relative deviations (similarly for the 2-loop
term at k ' 0.5 h/Mpc). Fig. 2 displays the total power spectrum at 1- and 2-loop normalized
to the EdS solution, computed at two redshifts z = 0 and z = 0.5. On large scales the linear
contribution dominates, which is not affected by the EdS approximation, hence the departure

– 8 –
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2F vs approx. schemes
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Figure 7. Fractional difference between different schemes and the 2F scheme of the total matter power
spectrum Pm,m at redshift z = 0 and with

∑
mν = 0.06, 0.15, 0.21, 0.3 eV. Dashed lines correspond

to the 1-loop power spectrum P = P lin. + P 1-loop, while solid lines correspond to the 2-loop power
spectrum P = P lin. + P 1-loop + P 2-loop. The shaded areas indicate the numerical uncertainties of the
2-loop results (numerical uncertainty at 1-loop is invisible).

suppression in the 1F scheme. This is seen in Fig. 10, which displays the separate 1- and
2-loop corrections to the power spectrum in the 1F-cb scheme, normalized to the 2F scheme.
Given our knowledge of the deviation in the non-linear corrections due to the departure from
EdS from Sec. 3 and comparing to Fig. 1 in particular, we conclude that the main difference
between the 1F-cb and 2F results comes from the EdS approximation in 1F-cb. The deviation
due to the neglection of the neutrino-neutrino and CDM+baryons-neutrino power spectra is
only about 0.1%. Note that the 1F-cb scheme appears to perform worse than the 1F scheme
in Figs. 7 and 8, however this is only due to the accidental cancellation between inaccuracies
of the 1- and 2-loop terms in the 1F scheme.

External source scheme (1F-ext) With a more proper treatment of the time- and scale-
dependence of the dynamics, the external source scheme yields results that are unwaveringly

– 20 –
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2F vs approx. schemes (z = 0.5)
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Figure 8. Same as Fig. 7, at redshift z = 0.5.

in agreement with the 2F scheme. There is a small difference at the permille level for the
smallest neutrino mass, but this could equally well be attributed to the two-fluid model: it
differs about a permille to the CLASS solution at the linear level, and this error plausibly
propagates to higher orders. We note that spurious dipole contributions may appear in the
k → 0 limit of the power spectrum in the 1F-ext scheme, due to momentum conservation
being slightly broken [33]. Moreover, the numerical complexity of the 1F-ext scheme is
comparable to the two-fluid setup, such that in practice there is little advantage over using
2F or 2F-ad.

Two-fluid scheme with adiabatic sound velocity (2F-ad) Lastly, the 2F-ad scheme
also agrees reasonably well with the 2F scheme in the linear and mildly non-linear regimes.
Even though the neutrino transfer functions are underestimated byO(10%) at the linear level,
this has negligible impact on the total matter power spectrum for the lowest neutrino mass.
Increasing the neutrino mass, the error in the neutrino sector influences the CDM+baryons
to greater extent via the coupling through gravity, leading to e.g. 0.3% deviation in the mildly
non-linear regime for

∑
mν = 0.3 eV compared to the 2F scheme.
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Large-scale Lyα forest power spectrum

I Scale of interest (BOSS Lyα data, z = 2.2− 4.4 )

k = 0.001− 0.02(km/s)−1 ∼ 0.1h/Mpc− 2h/Mpc

I Non-linear scale for mass density

knl ∼ 0.03− 0.05(km/s)−1 at z ∼ 2− 4

I Thermal broadening along line of sight

ks '
√
mp/T ∼ 0.1( km/s)−1

I Jeans scale kJ = H/cs , c2
s = Tγ/(µpmp), filtering scale

∝ exp(−(k/kF )2) e.g. Gnedin, Hui astro-ph/9706219

kF ∼ 0.2(km/s)−1 � knl



3D matter power spectrum at z = 3

Non-linear enhancement of mass density can be computed with
percent-level accuracy for k . 0.02(km/s)−1, z > 3
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MG, Konstandin, Sagunski, Tulin 1805.12203; MG, Konstandin, Sagunski, Viel 2011.03050



Effective model for 1D Lyα flux power spectrum

I Redshift-dependent density and velocity bias [A, β]

I Gaussian Jeans smoothing and thermal broadening [ks , kF , not
essential on BOSS scales] Gnedin, Hui astro-ph/9706219

I Non-linear density, velocity and cross power spectra up to 2-loop

I UV counterterm taking the dominant sensitivity to non-linear scales
from line-of-sight integration into account [Ī0]

P1D(k‖; A, β, Ī0, ks , kF ) =
1

2π

∫
k‖

PF (k, µ = k‖/k) k dk

= A(z)exp(−(k‖/ks (z))2) (I0 + 2β(z)I2 + β(z)2I4)

I0(k‖, z) =

∫
k‖

dk k exp(−(k/kF )2) Pδδ(k, z) + Ī0(z) ,

I2(k‖, z) =

∫
k‖

dk k2
‖

k
exp(−(k/kF )2) Pδθ(k, z) ,

I4(k‖, z) =

∫
k‖

dk k4
‖

k3
exp(−(k/kF )2) Pθθ(k, z) ,

MG, Konstandin, Sagunski, Tulin 1805.12203; MG, Konstandin, Sagunski, Viel 2011.03050



Effective model for 1D Lyα flux power spectrum

I 11 free nuisance/EFT parameters (z-dep density and velocity bias of
intergalactic medium, extra ‘counterterm’ due to integration across
line-of-sight)

I 5 are almost degenerate or marginally relevant

I remaining 6 varied in fit to Lyα forest data for z = 3− 4.2 w/o prior

MG, Konstandin, Sagunski, Tulin 1805.12203; MG, Konstandin, Sagunski, Viel 2011.03050



Validation with hydro sim

I Check with high-resolution hydro simulation (average over 5k
line-of-sight mock spectra, very good agreement within stat.
uncertainty < 1.5%) Bolton et al 1605.03462

MG, Konstandin, Sagunski, Tulin 1805.12203



EFT parameters
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Figure 9: Two-dimensional 95% and 68% C.L. contours for each of the effective model pa-

rameters that are left free in the fit, and the sum of neutrino masses. Blue lines correspond to

the baseline model with free amplitude, and red-shaded contours to the case with amplitude

fixed by calibration with simulations according to (20). For the lower right panel, only blue

contours are shown, since A is not a free model parameter for the case of fixed amplitude.

Instead, the red line in the lower right panel shows the dependence of A on
∑
mν implied by

(20).

Nevertheless, the scenario where A is left completely free, while fixing As, should be considered

as extremely conservative.

Once the degeneracy between the sum of neutrino masses and the overall amplitude A

is lifted by (20), the remaining free parameters are well constrained, and no further sig-

nificant degeneracy with the neutrino mass remains. This can be seen in figure 9, where

two-dimensional confidence contours for the case with fixed amplitude are shown in red.

For comparison, also the (much larger) regions obtained when letting the amplitude free are

shown by the blue lines. The degeneracy between A and
∑
mν can in particular be seen in

the lower right panel. In addition, the red line in the lower right panel shows the relation

between the amplitude A and the sum of neutrino masses (20) obtained from the calibration

with simulations. The increase in sensitivity for the model with fixed amplitude is related

to the different slope of this line as compared to the narrow blue confidence regions, along

which the neutrino mass is degenerate with A. We also note that the parameter βc.t., which

determines the redshift-dependence of the counterterm (cf. (11)), is compatible with large

values. This implies that the counterterm-contribution to I0 is mostly relevant towards the

lowest redshifts considered in the fit, while it is strongly suppressed at high redshifts. The

two-dimensional confidence contours are obtained by minimizing χ2 over the remaining 4 (5)

free parameters for fixed (free) amplitude, and requiring ∆χ2 < 2.28 or 5.99 relative to the

global best fit at 68% or 95% C.L., respectively, as appropriate for a χ2
2 distribution. The
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Strongly self-interacting Dark Matter

σ3→2 ∼ α3
eff/m

5

σ2→2 ∼ a2α2
eff/m

2 = 1cm2/g

Y. Hochberg, E. Kuflik, T. Volansky, J. Wacker Phys.Rev.Lett. 113 (2014) 171301, 1402.5143
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